VECTORS (Q 2, PAPER 2)

2002

2 (a) $\vec{s} = 4\vec{i} - 3\vec{j}$ and $\vec{t} = 2\vec{i} - 5\vec{j}$. Find $|\vec{st}|$.

- 2 (b) *oabc* is a parallelogram, where o is the origin. $p \in [ab]$ such that |ap|:|pb|=3:1. q is the midpoint of [oc].
 - (i) Using equiangular triangles, or otherwise, find the ratio |or|:|rp|.

(ii) Express \vec{p} , and hence \vec{r} , in terms of \vec{a} and \vec{b} .

2 (c) $\vec{k} = \vec{i} + 3\vec{j}$, $\vec{n} = 4\vec{i} - 2\vec{j}$, $\vec{u} = 2\vec{i} + \vec{j}$ and $\vec{v} = x\vec{i} + y\vec{j}$ where $x, y \in \mathbf{R}$.

(i) Express the value of $\overrightarrow{kn}.\overrightarrow{kv}$ in the form ax + by + c where $a, b, c \in \mathbb{R}$.

(ii) Prove that if $\overrightarrow{kn}.\overrightarrow{kv} = \overrightarrow{kn}.\overrightarrow{ku}$, and $\overrightarrow{u} \neq \overrightarrow{v}$, then $\overrightarrow{kn} \perp \overrightarrow{uv}$.

Answers

2 (a)
$$\sqrt{8}$$

2 (b) (i) 2:3 (ii) $\vec{p} = \frac{1}{4}\vec{a} + \frac{3}{4}\vec{b}$, $\vec{r} = \frac{1}{10}\vec{a} + \frac{3}{10}\vec{b}$
2 (c) (i) $3x - 5y + 12$

$$2$$
 (c) (i) $3x-5y+12$