SEQUENCES & SERIES (Q 4 & 5, PAPER 1)

1996

4 (a) Find S_n , the sum of n terms, of the geometric series

$$2+\frac{2}{3}+\frac{2}{3^2}+\dots+\frac{2}{3^{n-1}}$$
.

If $S_n = \frac{242}{81}$, find the value of *n*.

- (b) (i) Show that $\frac{1}{\sqrt{n+1}+\sqrt{n}}$ is equal to $\sqrt{n+1}-\sqrt{n}$.
 - (ii) If $u_n = \frac{1}{\sqrt{n+1} + \sqrt{n}}$ find an expression for the sum of the first *n* terms in terms of *n*.
- (c) $u_1, u_2, u_3, \dots, u_n$ is a sequence, where $u_n = 1 + 2 + 3 + \dots + n$.
 - (i) Show $u_n = \frac{n}{2}(n+1)$.
 - (ii) Express $u_n u_{n-1}$ in terms of n.
 - (iii) Show $u_n + u_{n-1} = n^2$.
 - (iv) Find $u_n^2 u_{n-1}^2$.

Hence, show that $\sum_{1}^{n} (u_n^2 - u_{n-1}^2) = 1 + 2^3 + 3^3 + \dots + n^3$ where $u_0 = 0$.

5 (a) Solve the simultaneous equations

$$\log(x+y) = 2\log x$$

 $\log y = \log 2 + \log(x-1)$ where x > 1, y > 0.

(b) (i) Write the binomial expansion of $(a+b)^4$ in ascending powers of b.

Find
$$\left(x+\frac{1}{x}\right)^4 - \left(x-\frac{1}{x}\right)^4$$
 in its simplest form.

(ii) Write u_{r+1} , the general term of the binomial expansion of $(3+2x)^n$ in terms of x, r and n.

If the coefficients of x^5 and x^6 are equal, find the value of n.

(c) Prove by induction that if $y = x^n$, then $\frac{dy}{dx} = nx^{n-1}$, $n \in \mathbb{N}_0$.

Answers

4 (a)
$$S_n = 3\left(1 - \frac{1}{3^n}\right)$$
, $n = 5$

(b) (ii)
$$\sqrt{n+1}-1$$

(b) (ii)
$$\sqrt{n+1} - 1$$

(c) (ii) n (iv) n^3

5 (a)
$$x = 2$$
, $y = 2$

(b) (i)
$$a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
, $8x^2 + \frac{8}{x^2}$

(ii)
$$u_{r+1} = {n \choose r} 3^{n-r} (2x)^r, n = 14$$