CALCULUS OPTION (Q 8, PAPER 2)

LESSON NO. 4: MAXIMISING AND MINIMISING FUNCTIONS

2004

8 (c) A solid cylinder has height *h* and radius *r*. The height of the cylinder, added to the circumference of its base, is equal to 3 metres.

- (i) Express the volume of the cylinder in terms of *r* and π .
- (ii) Find the maximum possible volume of the cylinder in terms of π .

SOLUTION

8 (c)

Use information from page 6/7 of the tables. The information you need is shown on the bottom of the page.

- 1. Identify the quantity to be maximized/minimized and give it a suitable symbol. **Example**: *V* for volume.
- 2. Draw a diagram (if necessary) and put in the variable(s).
- **3**. Write the quantity in terms of this/these variable(s).
- **4**. If there are 2 variables get rid of one in terms of the other using extra information.
- **5**. Hence, write the quantity as a function of a single variable.
- **6**. Differentiate the quantity with respect to the variable. Set it equal to zero and solve for the variable.
- **7**. Substitute the value of the variable back into the quantity to find the maximum/minimum value.

- 1. V (Volume)
- 2. Draw a diagram.

3.
$$V = \pi r^2 h$$

4. $h + 2\pi r = 3 \Longrightarrow h = 3 - 2\pi r$ [Extra information]

5.
$$V = \pi r^2 h = \pi r^2 (3 - 2\pi r) = 3\pi r^2 - 2\pi^2 r^2$$

6.
$$\frac{dV}{dr} = 6\pi r - 6\pi^2 r^2 = 0 \Rightarrow 1 - \pi r = 0 \Rightarrow r = \frac{1}{\pi}$$

7. $V_{\text{Max}} = 3\pi (\frac{1}{\pi})^2 - 2\pi^2 (\frac{1}{\pi})^3 = \frac{3}{\pi} - \frac{2}{\pi} = \frac{1}{\pi}$
8 (c) (i)

 $V = 3\pi r^2 - 2\pi^2 r^3$ [Step 5]

8 (c) (ii)

 $V_{\text{Max}} = \frac{1}{\pi} \text{ [Step 7]}$

