CALCULUS OPTION (Q 8, PAPER 2)

Lesson No. 1: Integration by Parts

2005

8 (a) Use integration by parts to find $\int x^2 \ln x \, dx$.

SOLUTION

8 (a)

Parts formula
$$\int u \, dv = uv - \int v \, du \qquad \dots \qquad 1$$

STEPS

- 1. Call the original integral I (ignore limits of integration).
- 2. Let u equal the higher function in the list and find du by differentiation; Let dv equal what is left and find v by integration.

Note: LIATE helps you to remember the order.

- 3. Substitute into Parts Formula. You will now be left with $\int v \, du$. You will either be able to integrate this integral normally or you must integrate by parts again.
- **4**. If there are limits of integration, do them at the end.

$$1. I = \int x^2 \ln x \, dx$$

1.
$$I = \int x^2 \ln x \, dx$$
2.
$$u = \ln x \qquad dv = x^2 dx$$

$$du = \frac{1}{x} dx \qquad v = \frac{1}{3} x^3$$

3.
$$I = uv - \int v \, du = (\ln x)(\frac{1}{3}x^3) - \int \frac{1}{3}x^3(\frac{1}{x}) \, dx = \frac{1}{3}x^3 \ln x - \frac{1}{3}\int x^2 \, dx$$

$$\therefore I = \frac{1}{3}x^3 \ln x - \frac{1}{9}x^3 + c$$

2004

8 (a) Use integration by parts to find $\int x \sin x \, dx$.

SOLUTION

8 (a)

$$\mathbf{1.} \ I = \int x \sin x \, dx$$

2.
$$u = x dv = \sin x dx$$
$$du = 1 dx v = -\cos x$$

3.
$$I = uv - \int v du = -x \cos x - \int (-\cos x) dx = -x \cos x + \sin x + c$$

List of Functions

- 1. Log
- 2. Inverse Trig
- 3. Algebraic
- **4**. **T**rigonometry
- 5. Exponential

2003

8 (a) Use integration by parts to find $\int xe^{-5x}dx$.

SOLUTION

8 (a)

$$1. I = \int xe^{-5x} dx$$

1.
$$I = \int xe^{-5x} dx$$

2. $u = x$ $dv = e^{-5x} dx$ $du = 1 dx$ $v = -\frac{1}{5}e^{-5x}$

3.
$$I = x(-\frac{1}{5}e^{-5x}) - \int (-\frac{1}{5}e^{-5x})dx = -\frac{1}{5}xe^{-5x} + \frac{1}{5}\int e^{-5x}dx$$

$$\therefore I = -\frac{1}{5}xe^{-5x} - \frac{1}{25}e^{-5x} + c$$

2002

8 (a) Use integration by parts to find $\int x \ln x \, dx$.

Solution

8 (a)

$$\mathbf{1.} \ I = \int x \ln x \, dx$$

1.
$$I = \int x \ln x \, dx$$
2.
$$u = \ln x \qquad dv = x \, dx$$

$$du = \frac{1}{x} dx \qquad v = \frac{1}{2} x^2$$

3.
$$I = uv - \int v \, du = (\ln x) \frac{1}{2} x^2 - \int (\frac{1}{2} x^2) (\frac{1}{x}) \, dx = \frac{1}{2} x^2 \ln x - \frac{1}{2} \int x \, dx$$

$$\therefore I = \frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 + c$$

2001

8 (a) Use integration by parts to find $\int x \cos x \, dx$.

SOLUTION

8 (a)

$$1. I = \int x \cos x \, dx$$

3.
$$I = uv - \int v \, du \Rightarrow I = x \sin x - \int \sin x \, dx$$

$$I = x \sin x + \cos x + c$$