CALCULUS OPTION (Q 8, PAPER 2)

2011

8. (a) Use integration by parts to find ∫x sin x dx.
(b) A window is in the shape of a rectangle with a semicircle on top. The radius of the semicircle is *r* metres and the height of the rectangular part is *x* metres. The perimeter of the window is 20 metres.
(i) Use the perimeter to express *x* in terms of *r* and *π*.
(ii) Find, in terms of *π*, the value of *r* for which the area of the window is a maximum.
(c) The Maclaurin series for tan⁻¹ x is x - (x³)/(3 + x⁵)/(5 + (x⁷)/(7 +))
(i) Write down the general term of the series.
(ii) Use the Ratio Test to show that the series converges for |x| < 1.
(iii) Using the fact that (π/4)/(4 = 4 tan⁻¹)/(5 - tan⁻¹)/(1239), and taking the first three terms in the Maclaurin series for tan⁻¹ x, find an approximation for *π*.

Give your answer correct to five decimal places.

Answers	
8 (a) $-x\cos x + \sin x + c$	
(b) (i) $\frac{20 - 2r - \pi r}{2}$	(ii) $\frac{20}{\pi+4}$
(c) (i) $(-1)^{n-1} \frac{x^{2n-1}}{2n-1}$	(iii) 3.17509