CIRCLE (Q 1, PAPER 2)

LESSON No. 7: PARAMETRIC EQUATIONS

2003

1 (a) For all values of $t \in \mathbf{R}$, the point $\left(\frac{3-3t^2}{1+t^2}, \frac{6t}{1+t^2}\right)$ lies on the circle $x^2 + y^2 = r^2$.

Find r, the radius of the circle.

SOLUTION

1 (a)

As the point lies on the circle, you can substitute it into the equation of the circle.

$$x^{2} + y^{2} = r^{2} \Longrightarrow \left(\frac{3 - 3t^{2}}{1 + t^{2}}\right)^{2} + \left(\frac{6t}{1 + t^{2}}\right)^{2} = r^{2}$$

$$\Rightarrow \frac{9 - 18t^2 + 9t^4 + 36t^2}{(1 + t^2)^2} = r^2 \Rightarrow \frac{9t^4 + 18t^2 + 9}{(1 + t^2)^2} = r^2$$

$$\Rightarrow \frac{9(t^4 + 2t^2 + 1)}{(1 + t^2)^2} = r^2 \Rightarrow \frac{9(t^2 + 1)^2}{(1 + t^2)^2} = r^2 \Rightarrow 9 = r^2$$

$$\therefore r = 3$$

2002

1 (a) The following parametric equations define a circle: $x = 4 + 3\cos\theta$, $y = -2 + 3\sin\theta$, where $\theta \in \mathbb{R}$. What is the Cartesian equation of the circle?

SOLUTION

1 (a)

STEPS

- 1. Isolate the trig functions.
- 2. Square both sides.
- **3**. Add.
- **4**. Put $\cos^2 t + \sin^2 t = 1$.

Parametric Equations: $x = 4 + 3\cos\theta$, $y = -2 + 3\sin\theta$

$$x-4=3\cos\theta \Rightarrow (x-4)^2=9\cos^2\theta$$

$$y+2=3\sin\theta \Rightarrow (y+2)^2=9\sin^2\theta$$

$$(x-4)^2 + (y+2)^2 = 9(\cos^2\theta + \sin^2\theta)$$

$$\Rightarrow (x-4)^2 + (y+2)^2 = 9$$