CIRCLE (Q 1, PAPER 2)

LESSON No. 2: LINE AND CIRCLE

2006

- 1 (c) S is the circle $x^2 + y^2 + 4x + 4y 17 = 0$ and K is the line 4x + 3y = 12.
 - (i) Show that the line *K* does not intersect *S*.
 - (ii) Find the co-ordinates of the point on S that is closest to K.

SOLUTION

1 (c) (i)

To show that the line K does not intersect the circle S can be done in two ways:

Method 1: Solve *K* and *S* simultaneously and show it has no real solutions.

Method 2: Show that the perpendicular distance from the centre of the circle to the line K is greater than the radius of the circle. [This is a better method.]

Method 1: *K*:
$$4x + 3y = 12 \Rightarrow x = \frac{12 - 3y}{4}$$

S:
$$x^2 + y^2 + 4x + 4y - 17 = 0 \Rightarrow \left(\frac{12 - 3y}{4}\right)^2 + y^2 + 4\left(\frac{12 - 3y}{4}\right) + 4y - 17 = 0$$

$$\Rightarrow \left(\frac{144 - 72y + 9y^2}{16}\right) + y^2 + 12 - 3y + 4y - 17 = 0$$

$$\Rightarrow 144 - 72y + 9y^2 + 16y^2 + 192 - 48y + 64y - 272 = 0$$

$$\Rightarrow 25y^2 - 56y + 64 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 4 REMEMBER: If $b^2 - 4ac \ge 0 \Rightarrow$ Real roots.
If $b^2 - 4ac < 0 \Rightarrow$ Unreal or complex roots.

$$a = 25$$
, $b = -56$, $c = 64$

$$b^2 - 4ac = (-56)^2 - 4(25)(64) = 3136 - 6400 = -3264 < 0$$

Therefore, there are no real solutions and so *K* and *S* do not intersect.

Method 2:

S:
$$x^2 + y^2 + 4x + 4y - 17 = 0$$

Centre
$$(-2, -2)$$
, $r = \sqrt{g^2 + f^2 - c} = \sqrt{4 + 4 + 17} = 5$

Centre
$$(-2, -2)$$
, $r = \sqrt{g^2 + f^2 - c} = \sqrt{4 + 4 + 17} = 5$

$$d = \frac{|4(-2) + 3(-2) - 12|}{\sqrt{4^2 + 3^2}} = \frac{|-26|}{5} = \frac{26}{5} > 5$$

$$c = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} \dots$$

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} \dots$$
8

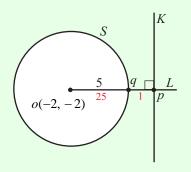
Circle C centre (-g, -f), radius r.

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
 3

$$r = \sqrt{g^2 + f^2 - c} \qquad \dots \qquad 4$$

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$
 8

1 (c) (ii)


You need to find the co-ordinates of point q. There are two methods to do this. They both involve finding the equation of L, which is perpendicular to K and contains o(-2, -2).

Equation of *L*: Point (-2, -2), $m = \frac{3}{4}$

L:
$$3x - 4y + k = 0$$

$$(-2, -2) \in L \Rightarrow 3(-2) - 4(-2) + k = 0 \Rightarrow -6 + 8 + k = 0 \Rightarrow k = -2$$

Equation of L: 3x-4y-2=0

Method 1: q divides the line op in the ratio 25:1. [The distance op is $\frac{26}{25}$ whereas the distance oq is $5 = \frac{25}{25}$.] You need to find p by solving lines K and L simultaneously.

$$4x+3y=12(\times 4)
3x-4y=2(\times 3)$$

$$16x+12y=48
9x-12y=6
25x = 54 \Rightarrow x = \frac{54}{25}$$

$$4x + 3y = 12$$

$$\Rightarrow y = \frac{12 - 4x}{3} = \frac{12 - 4(\frac{54}{25})}{3} = \frac{28}{25}$$

Therefore, the co-ordinates of $p(\frac{54}{25}, \frac{28}{25})$.

$$a(x_1, y_1)$$
 $a(x_1, y_1)$ $a(x_2, y_1)$

$$x = \frac{25(\frac{54}{25}) + 1(-2)}{25 + 1} = \frac{54 - 2}{26} = \frac{52}{26} = 2$$
 and $y = \frac{25(\frac{28}{25}) + 1(-2)}{25 + 1} = \frac{28 - 2}{26} = \frac{26}{26} = 1$

Therefore, the co-ordinates of q(2, 1).

Method 2: Intersect line L with circle S by solving simultaneously. There will be two solutions. q is the point closer to p.

$$L: 3x - 4y = 2 \Rightarrow x = \frac{4y + 2}{3}$$

S:
$$x^2 + y^2 + 4x + 4y - 17 = 0 \Rightarrow \left(\frac{4y + 2}{3}\right)^2 + y^2 + 4\left(\frac{4y + 2}{3}\right) + 4y - 17 = 0$$

$$\Rightarrow \left(\frac{16y^2 + 16y + 4}{9}\right) + y^2 + \left(\frac{16y + 8}{3}\right) + 4y - 17 = 0$$

$$\Rightarrow$$
 16 y² + 16 y + 4 + 9 y² + 48 y + 24 + 36 y - 153 = 0

$$\Rightarrow 25y^2 + 100y - 125 = 0 \Rightarrow y^2 + 4y - 5 = 0$$

$$\Rightarrow$$
 $(y+5)(y-1) = 0 \Rightarrow y = -5, 1 \Rightarrow x = -6, 2$

Therefore, the points of intersection are: (-6, -5), (2, 1)

The answer is (2, 1) as it is closer to the line. You can check by using the perpendicular distance formula.

2004

- 1 (b) The point a(5, 2) is on the circle K: $x^2 + y^2 + px 2y + 5 = 0$.
 - (i) Find the value of p.
 - (ii) The line L: x y 1 = 0 intersects the circle K. Find the co-ordinates of the points of intersection.

SOLUTION

1 (b) (i)

If a point is on the circle you can substitute it into the circle equation.

$$\therefore 25 + 4 + 5p - 4 + 5 = 0 \Rightarrow 5p = -30 \Rightarrow p = -6$$

1 (b) (ii)

STEPS

- 1. Isolate *x* or *y* using equation of the line.
- **2**. Substitute into the equation of the circle and solve simultaneously.

1. *L*:
$$x - y - 1 = 0 \Rightarrow x = y + 1$$

2. K:
$$x^2 + y^2 - 6x - 2y + 5 = 0 \Rightarrow (y+1)^2 + y^2 - 6(y+1) - 2y + 5 = 0$$

$$\Rightarrow y^2 + 2y + 1 + y^2 - 6y - 6 - 2y + 5 = 0 \Rightarrow 2y^2 - 6y = 0$$

$$\Rightarrow y^2 - 3y = 0 \Rightarrow y(y-3) = 0 \Rightarrow y = 0, 3 \Rightarrow x = 1, 4$$

Ans: Points of intersection are (1, 0) and (4, 3).

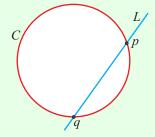
2001

1 (b) The equation of a circle is $(x+1)^2 + (y-8)^2 = 160$. The line x-3y+25=0 intersects the circle at the points p and q.

(i) Find the co-ordinates of p and the co-ordinates of q.

(ii) Investigate if [pq] is a diameter of the circle.

SOLUTION


1 (b) (i)

The line L intersects the circle C at two points, p and q. To find p and q follow the steps.

STEPS

1. Isolate *x* or *y* using equation of the line.

2. Substitute into the equation of the circle and solve simultaneously.

L:
$$x-3y+25=0 \Rightarrow x=3y-25$$

C:
$$(x+1)^2 + (y-8)^2 = 160 \Rightarrow (3y-25+1)^2 + (y-8)^2 = 160$$

$$\Rightarrow (3y-24)^2 + (y-8)^2 = 160 \Rightarrow (3[y-8])^2 + (y-8)^2 = 160$$

$$\Rightarrow$$
 9(y-8)² + (y-8)² = 160 \Rightarrow 10(y-8)² = 160

$$\Rightarrow (y-8)^2 = 16 \Rightarrow y-8 = \pm 4 \Rightarrow y = 4, 12 \Rightarrow x = -13, 11$$

Ans:
$$p(-13, 4), q(11, 12)$$

1 (b) (ii)

[pq] is a diameter if the midpoint of [pq] is the centre of the circle OR

the length of [pq] equals the diameter (twice the radius) of the circle.

Midpoint of [pq]:
$$\left(\frac{-13+11}{2}, \frac{4+12}{2}\right) = (-1, 8)$$

Centre of circle: (-1, 8)

Therefore, [pq] is the diameter.

OR

$$|pq| = \sqrt{(-13-11)^2 + (4-12)^2} = \sqrt{576+64} = \sqrt{640} = 8\sqrt{10}$$

Radius of circle
$$r = \sqrt{160} = 4\sqrt{10} \Rightarrow 2r = 8\sqrt{10}$$

Therefore, [pq] is the diameter.