CIRCLE (Q 1, PAPER 2)

2004

1 (a) A circle has centre (-1, 5) and passes through the point (1, 2). Find the equation of the circle.

1 (b) The point a(5, 2) is on the circle K: $x^2 + y^2 + px - 2y + 5 = 0$.

(i) Find the value of p.

(ii) The line L: x - y - 1 = 0 intersects the circle K. Find the co-ordinates of the points of intersection.

1 (c) The y-axis is a tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$.

(i) Prove that $f^2 = c$.

(ii) Find the equations of the circles that pass through the points (-3, 6) and (-6, 3) and have the y-axis as a tangent.

(-1, 5)

SOLUTION

1 (a)

Circle C with centre (h, k), radius r.

$$(x-h)^2 + (y-k)^2 = r^2$$
 2

Centre
$$(-1, 5)$$
, $r = \sqrt{(-1-1)^2 + (5-2)^2} = \sqrt{4+9} = \sqrt{13}$

Circle:
$$(x+1)^2 + (y-5)^2 = 13$$

Multiplying this equation also gives $x^2 + y^2 + 2x - 10y + 13 = 0 = 13$

If a point is on the circle you can substitute it into the circle equation.

$$\therefore 25 + 4 + 5p - 4 + 5 = 0 \Rightarrow 5p = -30 \Rightarrow p = -6$$

1 (b) (ii)

STEPS

- 1. Isolate x or y using equation of the line.
- **2**. Substitute into the equation of the circle and solve simultaneously.

1. *L*:
$$x - y - 1 = 0 \Rightarrow x = y + 1$$

2. K:
$$x^2 + y^2 - 6x - 2y + 5 = 0 \Rightarrow (y+1)^2 + y^2 - 6(y+1) - 2y + 5 = 0$$

$$\Rightarrow y^2 + 2y + 1 + y^2 - 6y - 6 - 2y + 5 = 0 \Rightarrow 2y^2 - 6y = 0$$

$$\Rightarrow y^2 - 3y = 0 \Rightarrow y(y-3) = 0 \Rightarrow y = 0, 3 \Rightarrow x = 1, 4$$

Ans: Points of intersection are (1, 0) and (4, 3).

1 (c) (i)

1 (c) (ii)

$$(-3, 6)$$
 is on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$

$$\Rightarrow$$
 9+36-6g+12f+c=0 \Rightarrow 6g-12f-c=45...(1)

$$(-6, 3)$$
 is on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$

$$\Rightarrow$$
 36+9-12g+6f+c=0 \Rightarrow 12g-6f-c=45...(2)

Y-axis is a tangent $\Rightarrow c = f^2...(3)$

Now look at the three equations. Eliminate g from equations (1) and (2).

Substitute equation 3 into 4.

$$18f + c = -45 \Rightarrow 18f + f^{2} = -45 \Rightarrow f^{2} + 18f + 45 = 0$$
$$\Rightarrow (f+15)(f+3) = 0 \Rightarrow f = -15, -3$$

Using equation 3: $c = f^2 \Rightarrow c = 225$, 9

Using equation 1:
$$6g - 12f - c = 45 \Rightarrow g = \frac{45 + 12f + c}{6} \Rightarrow g = 15, 3$$

Therefore the two equations are:

$$x^{2} + y^{2} + 6x - 6y + 9 = 0$$
 and $x^{2} + y^{2} + 30x - 30y + 225 = 0$.