ALGEBRA (Q 1 & 2, PAPER 1)

LESSON NO. 2: IDENTITIES

2006

- 1 (c) $x^2 t$ is a factor of $x^3 px^2 qx + r$.
 - (i) Show that pq = r.
 - (ii) Express the roots of $x^3 px^2 qx + r = 0$ in terms of *p* and *q*.

2005

1 (c) $(x-p)^2$ is a factor of $x^3 + qx + r$. Show that $27r^2 + 4q^3 = 0$. Express the roots of $3x^2 + q = 0$ in terms of *p*.

2003

2 (b) (ii) Given that $x^2 - ax - 3$ is a factor of $x^3 - 5x^2 + bx + 9$ where $a, b \in \mathbf{R}$, find the value of *a* and the value of *b*.

2001

- 1 (a) Find the real numbers a and b such that $x^2 + 4x 6 = (x + a)^2 + b$ for all $x \in \mathbf{R}$.
- 1 (c) $x^2 px + q$ is a factor of $x^3 + 3px^2 + 3qx + r$.
 - (i) Show that $q = -2p^2$.
 - (ii) Show that $r = -8p^3$.
 - (iii) Find the three roots of $x^3 + 3px^2 + 3qx + r = 0$ in terms of *p*.

Answers

2006 1 (c) $x = p, \pm \sqrt{q}$ **2005** 1 (c) $x = \pm p$ **2003** 2 (b) (ii) a = 2, b = 3**2001** 1 (a) a = 2, b = -10 1 (c) x = -4p, -p, 2p