TIIGONOMETRY (Q 5, PAPER 2)

LESSON No. 4: SINE RULE

2006

5 (b) In the triangle *abc*,

$$|ab| = 18.4, |bc| = 14 \text{ and } |\angle cab| = 44^{\circ}.$$

- (i) Find $|\angle bca|$, correct to the nearest degree.
- (ii) Find the area of the triangle *abc*, correct to the nearest whole number.

SOLUTION

5 (b) (i)

SINE RULE FORMULA

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \qquad \dots \qquad \mathbf{9} \qquad OR \qquad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad \dots \qquad \mathbf{9}$$

You use the Sine Rule when you are given:

- [A] Two angles and one side.
- [B] Two sides and one non-included angle.

REMEMBER IT AS:

$$\frac{\sin(\text{Angle 1})}{\text{Opposite side}} = \frac{\sin(\text{Angle 2})}{\text{Opposite side}} \quad OR \quad \frac{\text{Opposite side}}{\sin(\text{Angle 1})} = \frac{\text{Opposite side}}{\sin(\text{Angle 2})}$$

$$\frac{\sin C}{c} = \frac{\sin A}{a} \Rightarrow \frac{\sin C}{18.4} = \frac{\sin 44^{\circ}}{14}$$

$$\Rightarrow \sin C = \frac{18.4 \sin 44^{\circ}}{14} = 0.913$$

$$\therefore C = |\angle bca| = \sin^{-1}(0.913) = 66^{\circ}$$

5 (b) (ii)

The three angles in a triangle add up to 180°. Find the third angle in the triangle.

$$|\angle abc| + 44^{\circ} + 66^{\circ} = 180^{\circ}$$
$$\Rightarrow |\angle abc| = 180^{\circ} - 44^{\circ} - 66^{\circ}$$
$$\therefore |\angle abc| = 70^{\circ}$$

AREA OF A NON RIGHT-ANGLED TRIANGLE

$$A = \frac{1}{2}ab\sin C \qquad \qquad 6$$

REMEMBER IT AS

Area = $\frac{1}{2}$ × Product of 2 sides × Sine of the included angle

 $A = \frac{1}{2}(14)(18.4)\sin 70^{\circ} = 121$ square units