Tiigonometry (Q 5, Paper 2)

Lesson No. 3: Sector of a Circle

2005

5 (a) A circle has centre o and radius 14 cm . p and q are two points on the circle and $|\angle q o p|=135^{\circ}$.
Find the length of the shorter arc $p q$.
Take $\pi=\frac{22}{7}$.

Solution

$$
\begin{aligned}
& s=2 \pi r \times \frac{\theta}{360^{\circ}} \\
& \Rightarrow|p q|=2 \times \frac{22}{7} \times 14 \times \frac{135^{\circ}}{360^{\circ}} \\
& \therefore|p q|=33 \mathrm{~cm}
\end{aligned}
$$

Length of arc

$$
s=2 \pi r \times \frac{\theta}{360^{\circ}}
$$

$$
7
$$

2004

5 (b) A circle has centre o and radius 4 cm . a and b are two points on the circle and $|\angle a o b|=150^{\circ}$.
(i) Find the area of the circle, correct to the nearest cm^{2}.
(ii) Find the area of the sector $a o b$, correct to the nearest cm^{2}.

(iii) Find the length of the shorter arc $a b$, correct to the nearest cm .

Solution

5 (b) (i)
6. Circle

L : Length of Circumference r : Radius

$A=\pi r^{2}$
8
$r=4 \mathrm{~cm}$
Area of circle: $A=\pi r^{2}=\pi(4)^{2}=50 \mathrm{~cm}^{2}$
5 (b) (ii)
Area of sector

$$
A=\pi r^{2} \times \frac{\theta}{360^{\circ}}
$$

8

Area of sector aob: $A=\pi r^{2} \times \frac{\theta}{360^{\circ}}=50 \times \frac{150}{360}=21 \mathrm{~cm}^{2}$
Cont....

5 (b) (iii)

Length of arc

$$
\begin{equation*}
s=2 \pi r \times \frac{\theta}{360^{\circ}} \tag{7}
\end{equation*}
$$

Length of shorter arc $a o b: s=2 \pi r \times \frac{\theta}{360^{\circ}}=2 \pi(4) \times \frac{150}{360}=10 \mathrm{~cm}$

2003

5 (b) A circle has centre o and radius 7 cm . The two points b and c are on the circle and $|\angle b o c|=140^{\circ}$.
(i) Find the area of the triangle $o b c$, correct to the nearest cm^{2}.
(ii) Find the area of the sector $o b c$, correct to the nearest cm^{2}.
(iii) Taking the areas correct to the nearest cm^{2}, express the area of the shaded region as
a fraction of the total area enclosed by the circle.
Give your answer as a fraction in its simplest form.

Solution

5 (b) (i)
Area of a non right-angled triangle
$A=\frac{1}{2} a b \sin C$
6
Remember it as:
Area $=\frac{1}{2} \times$ Product of 2 sides \times Sine of the included angle

Area of triangle obc:
Area $=\frac{1}{2} \times$ Product of 2 sides \times Sine of the included angle
$\Rightarrow A=\frac{1}{2}(7)(7) \sin 140^{\circ}$
$\Rightarrow A=\frac{49}{2} \sin 140^{\circ}$
$\therefore A=16 \mathrm{~cm}^{2}$

5 (b) (ii)
Area of sector obc: $A=\pi r^{2} \times \frac{\theta}{360^{\circ}} \Rightarrow A=\pi(7)^{2} \times \frac{140^{\circ}}{360^{\circ}}$

$$
\therefore A=60 \mathrm{~cm}^{2}
$$

Area of sector
$A=\pi r^{2} \times \frac{\theta}{360^{\circ}} \ldots \ldots$.

5 (b) (iii)

Shaded area $=$ Area of sector $o b c-$ Area of triangle $o b c=60-16=44 \mathrm{~cm}^{2}$

Area of circle: $A=\pi r^{2} \Rightarrow A=\pi(7)^{2}=49 \pi$

$$
\therefore A=154 \mathrm{~cm}^{2}
$$

$\frac{\text { Area of shaded region }}{\text { Area of circle }}=\frac{44}{154}=\frac{2}{7}$

2002

5 (b) A circle has radius 24 cm and centre o.
(i) Calculate the area of a sector which has 70° at o.

Take $\pi=\frac{22}{7}$.

(ii) An arc of length 48 cm subtends an angle A at o. Calculate A, correct to the nearest degree.

Solution

5 (b) (i)
$A=\pi r^{2} \times \frac{\theta}{360^{\circ}} \Rightarrow A=\left(\frac{22}{7}\right)(24)^{2}\left(\frac{70^{\circ}}{360^{\circ}}\right)$

Area of sector
$A=\pi r^{2} \times \frac{\theta}{360^{\circ}} \ldots \ldots .8$
$\therefore A=352 \mathrm{~cm}^{2}$

5 (b) (ii)

$s=2 \pi r \times \frac{\theta}{360^{\circ}} \Rightarrow 48=2 \pi(24)\left(\frac{A}{360^{\circ}}\right)$
$\Rightarrow 48=48 \pi\left(\frac{A}{360^{\circ}}\right)$

Length of arc

7
$\therefore A=\frac{360}{\pi}=115^{\circ}$

1999

5 (b) In the diagram, o is the centre of the circle with radius length 5 and p and q are points on the circle. $|\angle p o q|=80^{\circ}$.
Find, correct to two places of decimals,
(i) the area of triangle poq
(ii) the area of the shaded region, taking $\pi=3 \cdot 14$.

Solution

5 (b) (i)

Area of a non right-Angled triangle

$$
A=\frac{1}{2} a b \sin C
$$

6
Remember it as:
Area $=\frac{1}{2} \times$ Product of 2 sides \times Sine of the included angle

$A=\frac{1}{2}(5)(5) \sin 80^{\circ}=12.31$ square units

5 (b) (ii)

Area of shaded region $=$ Area of sector poq - Area if triangle poq
Area of sector poq: $A=\pi r^{2} \times \frac{\theta}{360^{\circ}} \Rightarrow A=(3.14)(5)^{2} \times \frac{80^{\circ}}{360^{\circ}}$
$\therefore A=17.44$ square units
Area of sector
$A=\pi r^{2} \times \frac{\theta}{360^{\circ}}$
8

Area of shaded region $=17.44-12.31=5.13$ square units

1998

5 (a) The angle at the centre of a sector of a disc measures 140°.
The radius of the disc measures 6 cm .
Find, in terms of π, the area of the sector.

Solution

5 (a)
$A=\pi r^{2} \times \frac{\theta}{360^{\circ}}=\pi(6)^{2} \times \frac{140^{\circ}}{360^{\circ}}$

Area of sector
$A=\pi r^{2} \times \frac{\theta}{360^{\circ}}$
8
$\therefore A=14 \pi \mathrm{~cm}^{2}$

1996

5 (a) Find the length of an arc of a circle of radius length 6 cm subtending an angle of 120° at the centre. Give your answer in terms of π.

Solution

5 (a)

$s=2 \pi r \times \frac{\theta}{360^{\circ}}=2 \pi(6) \times \frac{120^{\circ}}{360^{\circ}}$
$\therefore s=4 \pi \mathrm{~cm}$

