Tiigonometry (Q 5, Paper 2)

Lesson No. 1: Right-angled Triangles

2007

5 (b) In the right-angled triangle $a b c,|a b|=5 \mathrm{~cm}$.
The area of the triangle is $15 \mathrm{~cm}^{2}$.
(i) Find $|b c|$.
(ii) Find $|\angle c a b|$, correct to the nearest degree.
(iii) Find $|\angle b c a|$, correct to the nearest degree.

Solution

5 (b) (i)

Area of a right-angled triangle

You can find the area, A, by multiplying half the base, b, by the perpendicular height, h.

$$
A=\frac{1}{2} b h
$$

2

$A=\frac{1}{2}|b c||a b| \Rightarrow 15=\frac{1}{2}|b c|(5)$
$\therefore|b c|=\frac{2 \times 15}{5}=6 \mathrm{~cm}$
5 (b) (ii)

$$
\tan A=\frac{y}{x}=\frac{\text { Opposite }}{\text { Adjacent }}
$$

5
$\tan A=\frac{6}{5} \Rightarrow A=\tan ^{-1}\left(\frac{6}{5}\right)$
$\therefore A=|\angle c a b|=50^{\circ}$

2006

5 (a) The lengths of two sides of a right-angled triangle are shown in the diagram.
(i) Copy the diagram into your answer book and on it mark the angle A such that $\tan A=\frac{5}{8}$.
(ii) Find the area of the triangle.

Solution

5 (a) (i)

$$
\tan A=\frac{y}{x}=\frac{\text { Opposite }}{\text { Adjacent }}
$$

5

5 (a) (ii)
Area of a right-angled triangle
You can find the area, A, by multiplying half the base, b, by the perpendicular height, h.

$$
A=\frac{1}{2} b h
$$

2
\qquad

$A=\frac{1}{2}(5)(8)=20$ square units

2004

5 (a) The lengths of the sides of a right-angled triangle are shown in the diagram and A is the angle indicated.
(i) Write down the value of $\cos A$.
(ii) Hence, find the angle A, correct to the nearest degree.

Solution

5 (a) (i)

$$
\cos A=\frac{x}{r}=\frac{\text { Adjacent }}{\text { Hypotenuse }}
$$

$\cos A=\frac{6}{10}=\frac{3}{5}$
5 (a) (ii)

$$
\cos A=\frac{3}{5} \Rightarrow A=\cos ^{-1}\left(\frac{3}{5}\right)=53^{\circ}
$$

2003

5 (a) The lengths of the sides of a right-angled triangle are shown in the diagram and B is the angle indicated. Find the value of $\sin B \cos B$, as a fraction.

Solution

$\sin B=\frac{3}{5}$
$\cos B=\frac{4}{5}$
$\therefore \sin B \cos B=\frac{3}{5} \times \frac{4}{5}=\frac{12}{25}$

$$
\cos A=\frac{x}{r}=\frac{\text { Adjacent }}{\text { Hypotenuse }}
$$

3
$\sin A=\frac{y}{r}=\frac{\text { Opposite }}{\text { Hypotenuse }}$
4

2002

5 (a) Use the information given in the diagram to show that

$$
\sin \theta+\cos \theta>\tan \theta
$$

Solution

$\sin \theta=\frac{3}{5}$
$\cos \theta=\frac{4}{5}$
$\cos A=\frac{X}{r}=\frac{\text { Adjacent }}{\text { Hypotenuse }}$

$\tan \theta=\frac{3}{4}$
$\sin \theta+\cos \theta=\frac{3}{5}+\frac{4}{5}=\frac{7}{5}>\frac{3}{4}$

$$
\sin A=\frac{y}{r}=\frac{\text { Opposite }}{\text { Hypotenuse }}
$$

4
$\therefore \sin \theta+\cos \theta>\tan \theta$

$$
\tan A=\frac{y}{x}=\frac{\text { Opposite }}{\text { Adjacent }}
$$

2000

5 (b) The diagram shows a vertical pole which stands on level ground.
A cable joins the top of the pole to a point on the ground which is 50 m from the base of the pole.
The cable makes an angle of $66^{\circ} 25^{\prime}$ with the ground.
(i) Find the height of the pole, correct to the nearest metre.
(ii) Find the length of the cable, correct to the nearest metre.

Solution

5 (b) (i)

$$
\tan A=\frac{y}{x}=\frac{\text { Opposite }}{\text { Adjacent }} \ldots \ldots . .5
$$

$\tan A=\frac{y}{x} \Rightarrow y=x \tan A$
$\Rightarrow y=50 \tan 66^{\circ} 25^{\prime}$
\therefore Height of pole $y=115 \mathrm{~m}$

5 (b) (i)

$$
\sin A=\frac{y}{r}=\frac{\text { Opposite }}{\text { Hypotenuse }}
$$

4
$\sin A=\frac{y}{r} \Rightarrow r=\frac{y}{\sin A}$
$\Rightarrow r=\frac{115}{\sin 66^{\circ} 25^{\prime}}$
\therefore Length of cable $r=125 \mathrm{~m}$

1999

5 (a) $a b c$ is a right-angled triangle with $|\angle a c b|=90^{\circ}$, $|a b|=13,|b c|=5$ and $|a c|=12$.
Find, as fractions, the value of $\sin \angle a b c$ and the value of $\tan \angle b a c$.

Solution

$\sin A=\frac{y}{r}=\frac{\text { Opposite }}{\text { Hypotenuse }}$....... (4)
$\sin \angle a b c=\frac{12}{13}$

$$
\tan A=\frac{y}{x}=\frac{\text { Opposite }}{\text { Adjacent }}
$$

$\tan \angle b a c=\frac{5}{12}$

1998

5 (b) A is an acute angle such that $\tan A=\frac{21}{20}$.
(i) Find, as fractions, the value of $\cos A$ and the value of $\sin A$.
(ii) Find the measurement of angle A, correct to the nearest degree.

Solution
5 (b) (i)

$$
\begin{equation*}
\tan A=\frac{y}{x}=\frac{\text { Opposite }}{\text { Adjacent }} \tag{5}
\end{equation*}
$$

Pythagoras

One of the angles in a right-angled triangle is 90°. The side opposite this angle is called the hypotenuse.
Pythagoras' theorem applies to right-angled triangles.

$$
x^{2}+y^{2}=r^{2} \ldots \ldots
$$

$x^{2}+y^{2}=r^{2} \Rightarrow 20^{2}+21^{2}=r^{2}$
$\Rightarrow r^{2}=400+441=841$
$\therefore r=\sqrt{841}=29$

$$
\cos A=\frac{20}{29}
$$

$$
\sin A=\frac{21}{29}
$$

5 (b) (ii)

$\tan A=\frac{21}{20} \Rightarrow A=\tan ^{-1}\left(\frac{21}{20}\right)$
$\therefore A=46^{\circ}$

$$
\begin{aligned}
& \cos A=\frac{x}{r}=\frac{\text { Adjacent }}{\text { Hypotenuse }} \ldots \ldots .3 \\
& \sin A=\frac{y}{r}=\frac{\text { Opposite }}{\text { Hypotenuse }} \\
& 4
\end{aligned}
$$

