Trigonometry (Q 5, Paper 2)

2005

5 (a) A circle has centre o and radius 14 cm . p and q are two points on the circle and $|\angle q o p|=135^{\circ}$.
Find the length of the shorter arc $p q$.
Take $\pi=\frac{22}{7}$.

(b) In the triangle $a b c,|a b|=5 \mathrm{~cm}$ and $|b c|=8 \mathrm{~cm}$. The area of the triangle is $16.58 \mathrm{~cm}^{2}$.
(i) Find $|\angle a b c|$, correct to the nearest degree.
(ii) Find $|a c|$, correct to the nearest centimetre.

(c) A lighthouse, h, is observed from a ship sailing a straight course due North.
The distance from p to h is 2 km and the bearing of the lighthouse from p is $\mathrm{N} 41.3^{\circ} \mathrm{E}$.
The distance from q to h is 2.64 km .
(i) Find the bearing of the lighthouse from q.
(ii) The ship is sailing at a speed of $19 \mathrm{~km} / \mathrm{h}$.

Find, correct to the nearest minute, the time taken to sail from p to q.

Solution

5 (a)
$s=2 \pi r \times \frac{\theta}{360^{\circ}}$
Length of arc
$s=2 \pi r \times \frac{\theta}{360^{\circ}} \ldots \ldots . .7$
$\Rightarrow|p q|=2 \times \frac{22}{7} \times 14 \times \frac{135^{\circ}}{360^{\circ}}$
$\therefore|p q|=33 \mathrm{~cm}$

5 (b) (i)

Area of a non right-angled triangle

$$
\begin{array}{l|l}
A=\frac{1}{2} a b \sin C & \ldots \ldots .
\end{array}
$$

Remember it as:

```
Area = 支 }\times\mathrm{ Product of 2 sides }\times\mathrm{ Sine of the included angle
```

Area $=\frac{1}{2} \times$ Product of 2 sides \times Sine of the included angle
$\Rightarrow 16.58=\frac{1}{2}(5)(8) \sin |\angle a b c|$
$\Rightarrow 16.58=20$ sin $|\angle a b c|$
$\Rightarrow \sin |\angle a b c|=\frac{16.58}{20}$
$\therefore|\angle a b c|=\sin ^{-1}\left(\frac{16.58}{20}\right)=56^{\circ}$
5 (b) (ii)

The Cosine Rule

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

10
You use the Cosine rule when you are given:
[A] Two sides and one included angle, [B] Three sides.

There are two other versions of the cosine rule not given in the tables:

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$\Rightarrow b^{2}=8^{2}+5^{2}-2(8)(5) \cos 56^{\circ}$
$\Rightarrow b^{2}=64+25-80 \cos 56^{\circ}$
$\therefore b=|a c|=7 \mathrm{~cm}$

5 (c) (i)
Sine Rule Formula
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \ldots \ldots .9$ or $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
9

You use the Sine Rule when you are given:
[A] Two angles and one side.
[B] Two sides and one non-included angle.

Remember it as:

$$
\frac{\sin (\text { Angle } 1)}{\text { Opposite side }}=\frac{\sin (\text { Angle 2) }}{\text { Opposite side }} \quad \text { or } \quad \frac{\text { Opposite side }}{\sin (\text { Angle 1) }}=\frac{\text { Opposite side }}{\sin (\text { Angle 2) }}
$$

$$
\begin{aligned}
& \frac{\sin A}{a}=\frac{\sin B}{b} \Rightarrow \frac{\sin A}{2}=\frac{\sin 41.3^{\circ}}{2.64} \\
& \Rightarrow \sin A=\frac{2 \sin 41.3^{\circ}}{2.64}=0.5 \\
& \therefore A=\sin ^{-1}(0.5)=30^{\circ}
\end{aligned}
$$

The compass directions are shown. The four main directions are North (N), South (S), East (E) and West (W). Other directions are combinations of these.

Ex. $\mathrm{S} 40^{\circ} \mathrm{W}$ means start at a point on the Southern direction and go 40° towards the West.

The bearing of the lighthouse from q is $\mathrm{S} 30^{\circ} \mathrm{E}$.

5 (c) (ii)

Find the angle C. The 3 angles of a triangle add up to 180°.
$C+41.3^{\circ}+30^{\circ}=180^{\circ} \Rightarrow C=108.7^{\circ}$
Use the Sine Rule to find the distance $|q p|$.
$\frac{c}{\sin C}=\frac{a}{\sin A} \Rightarrow \frac{c}{\sin 108.7^{\circ}}=\frac{2}{\sin 30^{\circ}}$
$\Rightarrow c=\frac{2 \sin 108.7^{\circ}}{\sin 30^{\circ}}$
$\therefore c=|q p|=3.8 \mathrm{~km}$

$$
\text { Speed }(v)=\frac{\text { Distance }(s)}{\text { Time }(t)} \quad v=\frac{s}{t}
$$

4
$v=19 \mathrm{~km} / \mathrm{h}$
$s=3.8 \mathrm{~km}$
$t=$?
$v=\frac{s}{t} \Rightarrow 19=\frac{3.8}{t}$
$\Rightarrow t=\frac{3.8}{19}=0.2 \mathrm{~h}=12$ minutes

