Trigonometry (Q 5, Paper 2)

2003

5 (a) The lengths of the sides of a right-angled triangle are shown in the diagram and B is the angle indicated. Find the value of $\sin B \cos B$, as a fraction.
(b) A circle has centre o and radius 7 cm .
 The two points b and c are on the circle and $|\angle b o c|=140^{\circ}$.
(i) Find the area of the triangle $o b c$, correct to the nearest cm^{2}.
(ii) Find the area of the sector obc, correct to the nearest cm^{2}.
(iii) Taking the areas correct to the nearest cm^{2}, express the area of the shaded region as a fraction of the total area enclosed by the circle. Give your answer as a fraction in its simplest form.
(c) One side of a triangle has length 8 cm and another has length 3 cm .

The angle between these two sides measures 60°.
(i) Find the length of the third side.
(ii) Find the measures of the two remaining angles, correct to the nearest degree.

Solution

5 (a)
$\sin B=\frac{3}{5}$
$\cos B=\frac{4}{5}$
$\therefore \sin B \cos B=\frac{3}{5} \times \frac{4}{5}=\frac{12}{25}$

$\cos A=\frac{x}{r}=\frac{\text { Adjacent }}{\text { Hypotenuse }}$
3
$\sin A=\frac{y}{r}=\frac{\text { Opposite }}{\text { Hypotenuse }}$
4

5 (b) (i)
Area of a non right-angled triangle
$A=\frac{1}{2} a b \sin C$
6
REMEMBER IT AS:

$$
\text { Area }=\frac{1}{2} \times \text { Product of } 2 \text { sides } \times \text { Sine of the included angle }
$$

Area of triangle obc:
Area $=\frac{1}{2} \times$ Product of 2 sides \times Sine of the included angle
$\Rightarrow A=\frac{1}{2}(7)(7) \sin 140^{\circ}$
$\Rightarrow A=\frac{49}{2} \sin 140^{\circ}$
$\therefore A=16 \mathrm{~cm}^{2}$

5 (b) (ii)

Area of sector obc: $A=\pi r^{2} \times \frac{\theta}{360^{\circ}} \Rightarrow A=\pi(7)^{2} \times \frac{140^{\circ}}{360^{\circ}}$

$$
\therefore A=60 \mathrm{~cm}^{2}
$$

Area of sector

$$
A=\pi r^{2} \times \frac{\theta}{360^{\circ}}
$$

5 (b) (iii)

Shaded area $=$ Area of sector $o b c-$ Area of triangle $o b c=60-16=44 \mathrm{~cm}^{2}$

```
6. Circle
```



```
L: Length of Circumference
\(r\) : Radius
```


Area of circle: $A=\pi r^{2} \Rightarrow A=\pi(7)^{2}=49 \pi$

$$
\therefore A=154 \mathrm{~cm}^{2}
$$

$\frac{\text { Area of shaded region }}{\text { Area of circle }}=\frac{44}{154}=\frac{2}{7}$

5 (c) (i)

The Cosine Rule

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

10 [A] Two sides and one included angle,
You use the Cosine rule when you are given: [B] Three sides.

There are two other versions of the cosine rule not given in the tables:

$$
\begin{align*}
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C \tag{10}
\end{align*}
$$

$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$\Rightarrow a^{2}=3^{3}+8^{2}-2(3)(8) \cos 60^{\circ}$
$\Rightarrow a^{2}=9+64-48\left(\frac{1}{2}\right)$
$\Rightarrow a^{2}=9+64-24$
$\Rightarrow a^{2}=49$
$\therefore a=\sqrt{49}=7 \mathrm{~cm}$

5 (c) (ii)

Sine Rule Formula

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \ldots \ldots .9 \quad \text { or } \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \ldots \ldots .9
$$

You use the Sine Rule when you are given:
[A] Two angles and one side.
[B] Two sides and one non-included angle.

Remember it as:

$$
\frac{\sin (\text { Angle 1) }}{\text { Opposite side }}=\frac{\sin (\text { Angle 2) }}{\text { Opposite side }} \text { or } \frac{\text { Opposite side }}{\sin (\text { Angle } 1)}=\frac{\text { Opposite side }}{\sin (\text { Angle } 2)}
$$

$\frac{\sin B}{b}=\frac{\sin A}{a} \Rightarrow \frac{\sin B}{3}=\frac{\sin 60^{\circ}}{7}$
$\Rightarrow \sin B=\frac{3 \sin 60^{\circ}}{7}=0.3712$
$\therefore B=\sin ^{-1}(0.3712)=22^{\circ}$

The 3 angles in a triangle add up to 180°.
$60^{\circ}+22^{\circ}+C=180^{\circ} \Rightarrow C=180^{\circ}-60^{\circ}-22^{\circ}$
$\therefore C=98^{\circ}$

