THGONOMETRY (Q 5, PAPER 2)

LESSON NO. 7: COMPOUND ANGLES

2001

- 5 (a) $\sin \theta = \frac{3}{5}$ where $0^{\circ} < \theta < 90^{\circ}$. Find, without using the Tables or a calculator, the value of (i) $\cos \theta$
 - (ii) $\cos 2\theta$. [Note: $\cos 2\theta = \cos^2 \theta \sin^2 \theta$.]

1997

5 (b) θ is an acute angle where $\tan \theta = \frac{5}{12}$. Find, as a fraction, the value of (i) $\cos \theta$ (ii) $\sin \theta$

(iii) $\cos 2\theta$. [Note: $\cos 2\theta = \cos(\theta + \theta)$.]

1996

5 (b) *A* and *B* are acute angles where $\sin A = \frac{3}{5}$ and $\cos B = \frac{5}{13}$. Find, as fractions, the value of $\cos A$ and the value of $\sin B$. Find the value of $\sin(A + B)$, giving your answer as a single fraction.

Answers			
2001 5 (a)	(i) $\frac{4}{5}$	(ii) $\frac{7}{25}$	
1997 5 (b)	(i) $\frac{12}{13}$	(ii) $\frac{5}{13}$	(iii) $\frac{119}{169}$
1996 5 (b)	$\frac{4}{5}, \frac{12}{13}, \frac{63}{65}$		