## Tiigonometry (Q 5, Paper 2)

## Lesson No. 6: More Difficult Triangles

## 2007

5 (c) In the triangle pqr, $|p q|=|p r|,|q r|=15 \mathrm{~cm}$ and $|r p q|=40^{\circ}$.
(i) Find $|p r|$, correct to the nearest centimetre.
(ii) $s$ is a point on $q r$ such that $|r s|=10 \mathrm{~cm}$. Find $|p s|$, correct to the nearest centimetre.


## 2006

5 (c) The lengths of the sides of the triangle pqr are $|p q|=20,|q r|=14$ and $|p r|=12$.
(i) Find $|\angle r p q|$, correct to one decimal place.
(ii) Find $|r t|$, where $r t \perp p q$. Give your
 answer correct to the nearest whole number.

2005
5 (c) A lighthouse, $h$, is observed from a ship sailing a straight course due North.
The distance from $p$ to $h$ is 2 km and the bearing of the lighthouse from $p$ is $\mathrm{N} 41.3^{\circ} \mathrm{E}$.
The distance from $q$ to $h$ is 2.64 km .
(i) Find the bearing of the lighthouse from $q$.
(ii) The ship is sailing at a speed of $19 \mathrm{~km} / \mathrm{h}$. Find, correct to the nearest minute, the time taken to sail from $p$ to $q$.


## 2004

5 (c) In the triangle $a b c, d$ is a point on $[b c]$.
$|b d|=5 \mathrm{~cm},|a c|=7 \mathrm{~cm}$,
$|\angle d c a|=82^{\circ}$ and $|\angle c a d|=50^{\circ}$.
(i) Find $|d c|$, correct to the nearest cm.
(ii) Find $|a b|$, correct to the nearest cm.


## 2002

5 (c) In the quadrilateral $a b c d,|a c|=5$ units, $|b c|=4$ units, $|\angle b c a|=110^{\circ},|\angle a c d|=33^{\circ}$ and $|\angle c d a|=23^{\circ}$.
(i) Calculate $|a b|$, correct to two decimal places.
(ii) Calculate $|c d|$, correct to two decimal places.


## 2001

5 (c) $s$ and $t$ are two points 300 m apart on a straight path due north.
From $s$ the bearing of a pillar is $\mathrm{N} 40^{\circ} \mathrm{E}$.
From $t$ the bearing of the pillar is $\mathrm{N} 70^{\circ} \mathrm{E}$.
(i) Show that the distance from $t$ to the pillar is 386 m , correct to the nearest metre.
(ii) Find the shortest distance from the path to the pillar, correct to the nearest metre.


## 2000

5 (c) (i) In the diagram, the triangle $z x y$ is right-angled. $|z x|=8 \mathrm{~m}$ and $|z y|=15 \mathrm{~m}$. Find $|x y|$.
(ii) $x p$ is parallel to $z y$.
$|x p|=|x y|$, as shown.
Calculate |py|, correct to the nearest metre.


## 1998

5 (c) Three ships are situated in a straight line at points $a, b$ and $c$. $p$ is a port such that
$|\angle b a p|=55^{\circ},|\angle a b p|=110^{\circ}$,
$|a b|=10 \mathrm{~km}$ and $|b c|=20 \mathrm{~km}$.
Calculate
(i) $|b p|$, correct to the nearest km
(ii) $|c p|$, correct to the nearest km.


## 1997

5 (c) $a b c$ is a triangle and $d \in[b c]$, as shown.
If $|b d|=4 \mathrm{~cm},|a c|=6 \mathrm{~cm},|\angle a c d|=65^{\circ}$
and $|\angle d a c|=70^{\circ}$, find
(i) $|d c|$, correct to the nearest cm
(ii) the area of triangle $a b c$, correct to
 the nearest $\mathrm{cm}^{2}$.

Answers
2007
5 (c) (i) 22 cm
(ii) 27 cm
2006
(c) (i) $43 \cdot 5^{\circ}$
(ii) 8 units
2005
5 (c) (i) $\mathrm{S} 30^{\circ} \mathrm{E}$
(ii) 12 minutes
2004
5 (c) (i) 7 cm
(ii) 13 cm
2002
5 (c) (i) 7.39 cm
(ii) $10 \cdot 61 \mathrm{~cm}$
5 (c) (ii) 363 m
5 (c) (i) 17 m
(ii) 8 m
1998
5 (c) (i) 32 km
(ii) 31 km
1997
5 (c) (i) 8 cm
(ii) $33 \mathrm{~cm}^{2}$

