Tifgonometry (Q 5, Paper 2)

Lesson No. 3: Sector of a Circle

2005

5 (a) A circle has centre o and radius 14 cm . p and q are two points on the circle and $|\angle q o p|=135^{\circ}$.
Find the length of the shorter arc $p q$.
Take $\pi=\frac{22}{7}$.

2004

5 (b) A circle has centre o and radius 4 cm .
a and b are two points on the circle and
$|\angle a o b|=150^{\circ}$.
(i) Find the area of the circle, correct to the nearest cm^{2}.
(ii) Find the area of the sector $a o b$, correct to the nearest cm^{2}.

(iii) Find the length of the shorter arc $a b$, correct to the nearest cm .

2003
5 (b) A circle has centre o and radius 7 cm . The two points b and c are on the
circle and $|\angle b o c|=140^{\circ}$.
(i) Find the area of the triangle $o b c$, correct to the nearest cm^{2}.
(ii) Find the area of the sector obc, correct to the nearest cm^{2}.
(iii) Taking the areas correct to the nearest cm^{2}, express the area of the shaded region as a fraction of the total area enclosed by the circle. Give your answer as a fraction in its simplest form.

2002

5 (b) A circle has radius 24 cm and centre o.
(i) Calculate the area of a sector which has 70° at o. Take $\pi=\frac{22}{7}$.

(ii) An arc of length 48 cm subtends an angle A at o. Calculate A, correct to the nearest degree.

1999

5 (b) In the diagram, o is the centre of the circle with radius length 5 and p and q are points on the circle. $|\angle p o q|=80^{\circ}$.
Find, correct to two places of decimals,
(i) the area of triangle poq
(ii) the area of the shaded region, taking $\pi=3 \cdot 14$.

1998

5 (a) The angle at the centre of a sector of a disc measures 140°.
The radius of the disc measures 6 cm .
Find, in terms of π, the area of the sector.

1996

5 (a) Find the length of an arc of a circle of radius length 6 cm subtending an angle of 120° at the centre. Give your answer in terms of π.

Answers			
2005	5 (a) 33 cm		
2004	5 (b) (i) $50 \mathrm{~cm}^{2}$	(ii) $21 \mathrm{~cm}^{2}$	(iii) 10 cm
2003	5 (b) (i) $16 \mathrm{~cm}^{2}$	(ii) $60 \mathrm{~cm}^{2}$	(iii) $\frac{2}{7}$
2002	5 (b) (i) $352 \mathrm{~cm}^{2}$	(ii) 115°	
1999	5 (b) (i) $12 \cdot 31$ units 2	(ii) $5 \cdot 13$ units 2	
1998	5 (a) $14 \pi \mathrm{~cm}^{2}$		
1996	5 (a) 4π		

