Tigonometry (Q 5, Paper 2)

Lesson No. 1: Right-angled Triangles

2007

5 (b) In the right-angled triangle $a b c,|a b|=5 \mathrm{~cm}$. The area of the triangle is $15 \mathrm{~cm}^{2}$.
(i) Find $|b c|$.
(ii) Find $|\angle c a b|$, correct to the nearest degree.
(iii) Find $|\angle b c a|$, correct to the nearest degree.

2006

5 (a) The lengths of two sides of a right-angled triangle are shown in the diagram.
(i) Copy the diagram into your answer book and on it mark the angle A such that $\tan A=\frac{5}{8}$.
(ii) Find the area of the triangle.

4 cm

2004
5 (a) The lengths of the sides of a right-angled triangle are shown in the diagram and A is the angle indicated.
(i) Write down the value of $\cos A$.
(ii) Hence, find the angle A, correct to the nearest degree.

2003

5 (a) The lengths of the sides of a right-angled triangle are shown in the diagram and B is the angle indicated. Find the value of $\sin B \cos B$, as a fraction.

2002
5 (a) Use the information given in the diagram to show that

$$
\sin \theta+\cos \theta>\tan \theta .
$$

2000

5 (b) The diagram shows a vertical pole which stands on level ground.
A cable joins the top of the pole to a point on the ground which is 50 m from the base of the pole.
The cable makes an angle of $66^{\circ} 25^{\prime}$ with the ground.
(i) Find the height of the pole, correct to the nearest metre.
(ii) Find the length of the cable, correct to the nearest metre.

1999
5 (a) $a b c$ is a right-angled triangle with $|\angle a c b|=90^{\circ}$, $|a b|=13,|b c|=5$ and $|a c|=12$.
Find, as fractions, the value of $\sin \angle a b c$ and the value of $\tan \angle b a c$.

1998

5 (b) A is an acute angle such that $\tan A=\frac{21}{20}$.
(i) Find, as fractions, the value of $\cos A$ and the value of $\sin A$.
(ii) Find the measurement of angle A, correct to the nearest degree.

Answers

20075 (b) (i) $|b c|=6 \mathrm{~cm}$
(ii) 50°
(iii) 40°
20065 (a) (ii) 20 units 2
20045 (a) (i) $\frac{3}{5}$
(ii) 53°
20035 (a) $\frac{12}{25}$
2000 (b) (i) 115 m
(ii) 125 m
19995 (a) $\frac{12}{13}, \frac{5}{12}$
$1998 \quad 5$ (b) (i) $\frac{20}{29}, \frac{21}{29} \quad$ (ii) 46°

