Trigonometry (Q 5, Paper 2)

2001

5 (a) $\sin \theta=\frac{3}{5}$ where $0^{\circ}<\theta<90^{\circ}$.
Find, without using the Tables or a calculator, the value of
(i) $\cos \theta$
(ii) $\cos 2 \theta$. [Note: $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$.]
(b) In the triangle $a b c,|a b|=3$ units, $|b c|=7$ units and $|\angle a b c|=67^{\circ}$.
(i) Calculate the area of the triangle $a b c$, correct to one decimal place.
(ii) Calculate $|a c|$, correct to the nearest whole number.

(c) s and t are two points 300 m apart on a straight path due north.
From s the bearing of a pillar is $\mathrm{N} 40^{\circ} \mathrm{E}$.
From t the bearing of the pillar is $\mathrm{N} 70^{\circ} \mathrm{E}$.
(i) Show that the distance from t to the pillar is 386 m , correct to the nearest metre.
(ii) Find the shortest distance from the path to the pillar, correct to the nearest metre.

Answers

5
(a) (i) $\frac{4}{5}$
(ii) $\frac{7}{25}$
(b) (i) $9 \cdot 7$ units 2
(ii) 6 units
(c) (ii) 363 m

