Sequences \& Series (Q 5, Paper 1)

Lesson No. 8: Geometric Series

2007

5 (c) The first two terms of a geometric series are $\frac{1}{3}+\frac{1}{9}+\ldots$
(i) Find r, the common ratio.
(ii) Find an expression for S_{n}, the sum of the first n terms.

Write your answer in the form $\frac{1}{k}\left(1-\frac{1}{3^{n}}\right)$ where $k \in \mathbf{N}$.
(iii) The sum of the first n terms of the geometric series $\frac{p}{3}+\frac{p}{9}+\ldots$ is $1-\frac{1}{3^{n}}$.

Find the value of p.
Solution
5 (c)
Geometric series: $\frac{1}{3}+\frac{1}{9}+\ldots$.
5 (c) (i)
$r=\frac{\frac{1}{9}}{\frac{1}{3}}=\frac{1}{9} \times \frac{3}{1}=\frac{1}{3}$

$$
\text { Any term } \div \text { Previous term }=\frac{T_{n}}{T_{n-1}}=\text { Constant }(r)
$$

5 (c) (ii)
$a=\frac{1}{3}$
$r=\frac{1}{3}$
Summing formula: $S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
5
$\therefore S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{\left(\frac{1}{3}\right)\left(1-\left(\frac{1}{3}\right)^{n}\right)}{1-\left(\frac{1}{3}\right)}$
$=\frac{\left(\frac{1}{3}\right)\left(1-\left(\frac{1}{3}\right)^{n}\right)}{\frac{2}{3}}$
$=\frac{1}{2}\left(1-\frac{1}{3^{n}}\right)$
5 (c) (iii)
Geometric series: $\frac{p}{3}+\frac{p}{9}+\ldots$

$$
\begin{aligned}
& a=\frac{p}{3} \\
& r=\frac{\frac{p}{9}}{\frac{p}{3}}=\frac{1}{3} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{\left(\frac{p}{3}\right)\left(1-\left(\frac{1}{3}\right)^{n}\right)}{1-\frac{1}{3}} \\
& =\frac{\left(\frac{p}{3}\right)\left(1-\left(\frac{1}{3}\right)^{n}\right)}{\frac{2}{3}} \\
& =\left(\frac{p}{2}\right)\left(1-\left(\frac{1}{3}\right)^{n}\right) \\
& =\frac{p}{2}\left(1-\frac{1}{3^{n}}\right)
\end{aligned}
$$

You are told that the sum of the first n terms is given by $1-\frac{1}{3^{n}}$.
$\therefore \frac{p}{2}\left(1-\frac{1}{3^{n}}\right)=1-\frac{1}{3^{n}}$
$\Rightarrow \frac{p}{2}=1$
$\Rightarrow p=2$

2006

5 (b) The nth term of a geometric series is
$T_{n}=4\left(\frac{1}{2}\right)^{n}$.
(i) Find a, the first term.
(ii) Find r, the common ratio.
(iii) Write $4-S_{10}$ in the form $\frac{1}{2^{k}}, k \in \mathbf{N}$, where S_{10} is the sum of the first ten terms.

Solution

5 (b) (i)
Replace n by 1 in the general term to find a.
$a=T_{1}$
$T_{n}=4\left(\frac{1}{2}\right)^{n}$
$\Rightarrow T_{1}=4\left(\frac{1}{2}\right)^{1}=4\left(\frac{1}{2}\right)=2$

5 (b) (ii)

To find the common ratio, r, find the second term, T_{2}, and then divide the second term by the first term.
$T_{n}=4\left(\frac{1}{2}\right)^{n}$
$\Rightarrow T_{2}=4\left(\frac{1}{2}\right)^{2}=4\left(\frac{1}{4}\right)=1$
$\therefore r=\frac{T_{2}}{T_{1}}=\frac{1}{2}$

5 (b) (iii)

$$
\begin{aligned}
& n=10 \\
& \begin{array}{l}
a=2 \\
r=\frac{1}{2} \\
\therefore S_{10}=\frac{a\left(1-r^{n}\right)}{(1-r)} \\
\Rightarrow S_{10}=\frac{2\left(1-\left(\frac{1}{2}\right)^{10}\right)}{\left(1-\frac{1}{2}\right)}=\frac{2\left(1-\left(\frac{1}{2}\right)^{10}\right)}{\frac{1}{2}} \\
\Rightarrow S_{10}=4\left(1-\left(\frac{1}{2}\right)^{10}\right)=4-4\left(\frac{1}{2}\right)^{10} \\
\therefore 4-S_{10}=4-4+4\left(\frac{1}{2}\right)^{10} \\
=4\left(\frac{1}{2}\right)^{10}=2^{2} \times \frac{1}{2^{10}}=\frac{2^{2}}{2^{10}} \\
=\frac{1}{2^{8}}
\end{array}
\end{aligned}
$$

2004

5 (c) The first term of a geometric series is 1 and the common ratio is -4 .
(i) Write down the first three terms of the series.
(ii) Find S_{6}, the sum of the first 6 terms.
(iii) Show that $16 S_{4}-3=S_{6}$, where S_{4} is the sum of the first 4 terms.

Solution

5 (c) (i)
Write down the first term and keep on multiplying by the common ratio.
$a=1, r=-4$
Geometric series: $1,-4,16$,..

5 (c) (ii)
$n=6, a=1, r=-4$ Summing formula: $S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
$\Rightarrow S_{6}=\frac{1\left(1-(-4)^{6}\right)}{(1-(-4))}$
$\Rightarrow S_{6}=\frac{(1-4096)}{5}$
$\Rightarrow S_{6}=\frac{-4095}{5}=-819$

5 (c) (iii)

$$
\begin{aligned}
& n=4, a=1, r=-4 \\
& 16 S_{4}-3=16\left(\frac{1\left(1-(-4)^{4}\right)}{(1-(-4))}\right)-3 \\
& =16\left(\frac{(1-256)}{5}\right)-3 \\
& =16\left(\frac{-255}{5}\right)-3 \\
& =16(-51)-3 \\
& =-816-3=-819
\end{aligned}
$$

2003

5 (b) The first two terms of a geometric series are $32+8+\ldots$
(i) What us the value of r, the common ratio?
(ii) Find an expression for S_{n}, the sum of the first n terms.
(iii) Find S_{10}, the sum of the first 10 terms.

Given your answer correct to four decimal places.

Solution

5 (b) (i)

Geometric series: $32+8+\ldots$

$$
r=\text { Common ratio }=\text { Any term } \div \text { Previous term }
$$

$\therefore r=\frac{8}{32}=\frac{1}{4}$
5 (b) (ii)
$a=32, r=\frac{1}{4}$
Summing formula: $S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
5
$S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
$\Rightarrow S_{n}=\frac{32\left(1-\left(\frac{1}{4}\right)^{n}\right)}{\left(1-\frac{1}{4}\right)}$
$\Rightarrow S_{n}=\frac{32\left(1-\left(\frac{1}{4}\right)^{n}\right)}{\frac{3}{4}}$
$\Rightarrow S_{n}=\frac{128}{3}\left(1-\left(\frac{1}{4}\right)^{n}\right)$
5 (b) (iii)
$S_{10}=\frac{128}{3}\left(1-\left(\frac{1}{4}\right)^{10}\right)=42.6666$ [Use calculator]

2001

5 (b) The nth term of a geometric series is given by $T_{n}=3^{n}$.
(i) What is the value of a, the first term?
(ii) What is the value of r, the common ratio?
(iii) Show that S_{10}, the sum of the first ten terms, is $\frac{3}{2}\left(3^{10}-1\right)$.

Solution

5 (b) (i)
$T_{n}=3^{n}$
$\therefore T_{1}=a=3^{1}=3$
5 (b) (ii)

$$
r=\text { Common ratio }=\text { Any term } \div \text { Previous term }
$$

Find the second term, T_{2}, and then find the common ratio r by dividing the second term by the first term.
$T_{2}=3^{2}=9$
$\therefore r=\frac{9}{3}=3$

5 (b) (iii)

$a=3, r=3, n=10$
Summing formula:
$S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
5
$S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
$\Rightarrow S_{10}=\frac{3\left(1-3^{10}\right)}{(1-3)}$
$\Rightarrow S_{10}=\frac{3\left(1-3^{10}\right)}{-2}$
$\Rightarrow S_{10}=-\frac{3}{2}\left(1-3^{10}\right)$
$\Rightarrow S_{10}=\frac{3}{2}\left(3^{10}-1\right)$

2000

5 (b) The first term of a geometric series is 1 and the common ratio is $\frac{11}{10}$.
(i) Write down the second, thirds and fourth terms of the series.
(ii) Calculate S_{4}, the sum of the first four terms. Give your answer as a decimal.

Solution

5 (b) (i)
To generate the terms of a geometric series multiply each term by the ratio to get the next term.
$a=T_{1}=1$
$T_{2}=1 \times \frac{11}{10}=\frac{11}{10}$
$T_{3}=\frac{11}{10} \times \frac{11}{10}=\frac{121}{100}$
$T_{4}=\frac{121}{100} \times \frac{11}{10}=\frac{1331}{1000}$
5 (b) (ii)
$S_{4}=T_{1}+T_{2}+T_{3}+T_{4}=1+\frac{11}{10}+\frac{121}{100}+\frac{1331}{1000}=1+1.1+1.21+1.331=1.641$

1999

5 (b) The first two terms of a geometric series are $2+\frac{2}{3}+\ldots$
(i) Find r, the common ratio.
(ii) Write down the third and fourth terms of the series.
(iii) Show that S_{6}, the sum to 6 terms, is $3-\frac{1}{3^{5}}$.

Solution

5 (b) (i)

$$
r=\text { Common ratio }=\text { Any term } \div \text { Previous term }
$$

$r=\frac{\frac{2}{3}}{2}=\frac{2}{3} \times \frac{1}{2}=\frac{1}{3}$
5 (b) (ii)
To generate the terms of a geometric sequence, keep on multiplying each term by the common ratio r to get the next term.

$$
\begin{aligned}
& T_{3}=\frac{2}{3} \times \frac{1}{3}=\frac{2}{9} \\
& T_{4}=\frac{2}{9} \times \frac{1}{3}=\frac{2}{27}
\end{aligned}
$$

5 (b) (iii)
$a=2, r=\frac{1}{3}, n=6$
Summing formula: $S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
(5)
$S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
$\Rightarrow S_{6}=\frac{2\left(1-\left(\frac{1}{3}\right)^{6}\right)}{\left(1-\left(\frac{1}{3}\right)\right)}$
$\Rightarrow S_{6}=\frac{2\left(1-\left(\frac{1}{3}\right)^{6}\right)}{\left(1-\left(\frac{1}{3}\right)\right)}$
$\Rightarrow S_{6}=\frac{2\left(1-\left(\frac{1}{3}\right)^{6}\right)}{\frac{2}{3}} \quad$ [Note: $\frac{2}{\frac{2}{3}}=2 \times \frac{3}{2}=3$]
$\Rightarrow S_{6}=3\left(1-\left(\frac{1}{3}\right)^{6}\right)$
$\Rightarrow S_{6}=3-3\left(\frac{1}{3}\right)^{6}$
[Note: $3\left(\frac{1}{3}\right)^{6}=3^{1} \times \frac{1}{3^{6}}=\frac{1}{3^{5}}$]
$\Rightarrow S_{6}=3-\frac{1}{3^{5}}$

1998

5 (b) The nth term of a geometric sequence is

$$
T_{n}=\frac{2^{n}}{3^{n}} .
$$

(i) Find the first three terms of the sequence.
(ii) Show that S_{5}, the sum of the first five terms, is $\frac{422}{243}$.

Solution
5 (b) (i)
$T_{n}=\frac{2^{n}}{3^{n}}$
$\therefore T_{1}=\frac{2^{(1)}}{3^{(1)}}=\frac{2}{3}$
$\therefore T_{2}=\frac{2^{(2)}}{3^{(2)}}=\frac{4}{9}$
$\therefore T_{3}=\frac{2^{(3)}}{3^{(3)}}=\frac{8}{27}$
Geometric sequence: $\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \ldots$

$$
\begin{aligned}
& 5 \text { (b) (ii) } \\
& \text { Summing formula: } S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} \text {...... (5) } \\
& r=\text { Common ratio }=\text { Any term } \div \text { Previous term } \\
& r=\frac{\frac{4}{9}}{\frac{2}{3}}=\frac{4}{9} \times \frac{3}{2}=\frac{2}{3} \\
& a=\frac{2}{3}, r=\frac{2}{3}, n=5 \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} \\
& \Rightarrow S_{5}=\frac{\left(\frac{2}{3}\right)\left(1-\left(\frac{2}{3}\right)^{5}\right)}{\left(1-\left(\frac{2}{3}\right)\right)} \\
& \Rightarrow S_{5}=\frac{\left(\frac{2}{3}\right)\left(1-\frac{32}{243}\right)}{\frac{1}{3}} \\
& \Rightarrow S_{5}=2\left(\frac{211}{243}\right)=\frac{422}{243}
\end{aligned}
$$

1996

5 (b) The nth term, T_{n}, of a geometric series is

$$
T_{n}=3^{n-1} .
$$

Find
(i) T_{1}, the first term
(ii) r, the common ratio
(iii) S_{n}, the sum to n terms.

Investigate if

$$
2 S_{n}-T_{n}=2 T_{n}-1 .
$$

Solution

5 (b) (i)

$T_{n}=3^{n-1} \Rightarrow T_{1}=3^{(1)-1}=3^{0}=1$

5 (b) (ii)

$$
r=\text { Common ratio }=\text { Any term } \div \text { Previous term }
$$

Find the second term T_{2} and then divide the second term by the first term to find r.

$$
\begin{aligned}
& T_{n}=3^{n-1} \Rightarrow T_{2}=3^{(2)-1}=3^{1}=3 \\
& \Rightarrow r=\frac{T_{2}}{T_{1}}=\frac{3}{1}=3
\end{aligned}
$$

$$
\begin{aligned}
& 5 \text { (b) (iii) } \\
& a=1, r=3 \\
& \text { Summing formula: } S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} \\
& 5 \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} \\
& \Rightarrow S_{n}=\frac{1\left(1-3^{n}\right)}{(1-3)} \\
& \Rightarrow S_{n}=\frac{1\left(1-3^{n}\right)}{-2} \\
& \Rightarrow S_{n}=\frac{1}{2}\left(3^{n}-1\right) \\
& \begin{array}{l|l}
\text { LHS } & \text { RHS } \\
2 S_{n}-T_{n} & 2 T_{n}-1 \\
=2\left[\frac{1}{2}\left(3^{n}-1\right)\right]-3^{n-1} & =2\left(3^{n-1}\right)-1 \\
=3^{n}-1-3^{n-1} & \\
=\left(3^{n}-3^{n-1}\right)-1 & \\
=3^{n-1}\left(3^{1}-1\right)-1 & \\
=3^{n-1}(2)-1 &
\end{array} \\
& \therefore 2 S_{n}-T_{n}=2 T_{n}-1
\end{aligned}
$$

