Sequences \& Series (Q 5, Paper 1)

2011

5. (a) The first term of a geometric sequence is 5 and the common ratio is 2 .

Find the first four terms of the sequence.
(b) The first three terms of an arithmetic series are $7+4+1+\ldots$.
(i) Find d, the common difference.
(ii) Find T_{15}, the fifteenth term of the series.
(iii) Find S_{15}, the sum of the first fifteen terms of the series.
(c) The first three terms of a geometric sequence are

$$
h-1,2 h \text { and } 5 h+3 \text {, }
$$

where h is a real number greater than 1.
(i) Find the value of h.
(ii) The k th term of the sequence is 486 . Find k.

Solution

5 (a)
First term $a=5$
Common ratio $r=2$
Geometric sequence: 5, 10, 20, 40

$$
\begin{aligned}
& \mathbf{5} \text { (b) (i) } \\
& 7+4+1+\ldots \\
& a=7 \\
& d=4-7=-3 \\
& \\
& \mathbf{5} \text { (b) (ii) } \\
& \begin{aligned}
a & =7 \\
d & =-3 \\
n & =15 \\
T_{15} & =7+(15-1)(-3) \\
& =7+(14)(-3) \\
& =7-42 \\
& =-35
\end{aligned} \\
&
\end{aligned}
$$

```
5 (b) (iii)
\(a=7\)
\(d=-3\)
\(n=15\)
\(S_{15}=\frac{15}{2}[2(7)+(15-1)(-3)] \quad\) Summing formula: \(S_{n}=\frac{n}{2}[2 a+(n-1) d]\)
    \(=\frac{15}{2}[14+(14)(-3)]\)
    \(=\frac{15}{2}[14-42]\)
    \(=\frac{15}{2}[-28]\)
    \(=15[-14]\)
    \(=-210\)
```

5 (c) (i)
$h-1,2 h, 5 h+3 \quad$ [Dividing consecutive terms in a geometric sequence $\frac{2 h}{(5 h+3)}$ gives you the same answer, the common ratio r.]
$(h-1) \quad 2 h$
$\frac{2 h \times 2 h(h-1)}{(h-1)}=\frac{(5 h+3) \times 2 \hbar(h-1)}{2 \hbar}$
$4 h^{2}=(5 h+3)(h-1)$
$4 h^{2}=5 h(h-1)+3(h-1)$
$4 h^{2}=5 h^{2}-5 h+3 h-3$
$0=5 h^{2}-4 h^{2}-5 h+3 h-3$
$0=h^{2}-2 h-3$
$0=(h-3)(h+1)$
$\therefore h=\neq 3 \quad$ [You are told that $h>0$, i.e. positive.]

5 (c) (ii)

Geometric sequence: 2, 6, 18 [Replace h by 3 to get the sequence.] $a=2, r=3$

$$
\begin{aligned}
T_{k}=2 \times 3^{k-1} \Rightarrow & 486=2 \times 3^{k-1} \quad \text { General term: } \quad T_{n}=a r^{n-1} \\
& 243=3^{k-1} \\
& 3^{5}=3^{k-1} \\
& \therefore 5=k-1 \Rightarrow k=6
\end{aligned}
$$

