SEQUENCES & SERIES (Q 5, PAPER 1)

2008

- (a) Find the eleventh term of the arithmetic sequence 5, 14, 23 ...
 - (b) The *n*th term of a geometric sequence is

$$T_n = \frac{3^n}{27}.$$

- (i) Find a, the first term.
- (ii) Find r, the common ratio.
- (iii) The *k*th term of the sequence is 243. Find *k*.
- (c) The sum of the first n terms of an arithmetic series is given by $S_n = n^2 16n$.
 - (i) Use S_1 and S_2 to find the first term and the common difference.
 - (ii) Find T_n , the *n*th term of the series.
 - (iii) Find the values of $n \in \mathbb{N}$ for which $S_n = -63$.

SOLUTION

5 (a)

$$a = 5, d = 9, n = 11$$

$$T_{11} = 5 + (11-1)9$$

$$T_{12} = 3 + (n-1)d$$
......2

$$T_n = a + (n-1)d$$
 ...

$$T_{..} = 5 + (11 - 1)9$$

$$\Rightarrow T_{11} = 5 + 10 \times 9 = 5 + 90$$

$$T_{11} = 95$$

5 (b) (i)

$$T_n = \frac{3^n}{27} \Rightarrow T_1 = a = \frac{3^1}{27} = \frac{1}{9}$$

5 (b) (ii)

$$T_n = \frac{3^n}{27} \Rightarrow T_2 = \frac{3^2}{27} = \frac{9}{27} = \frac{1}{3}$$

$$\therefore r = \frac{T_2}{T_1} = \frac{\frac{1}{3}}{\frac{1}{9}} = 3$$

$$T_k = \frac{1}{9}(3)^{k-1} = 243$$

$$a_n = ar^{n-1}$$

$$1. \ a^m \times a^n = a^{m+1}$$

$$\Rightarrow 2^{k-3} - 2^5$$

2.
$$\frac{a^m}{a^n} = a^{m-1}$$

5 (c) (i)

$$S_n = n^2 - 16n$$

$$\Rightarrow S_1 = (1)^2 - 16(1) = 1 - 16 = -15$$

$$\Rightarrow$$
 $S_2 = (2)^2 - 16(2) = 4 - 32 = -28$

$$a = T_1 = S_1 = -15$$
 $S_1 = T_1$ for all sequences and series.

$$T_2 = S_2 - S_1 = -28 - (-15) = -28 + 15 = -13$$
 $S_n - S_{n-1} = T_n$

$$d = T_2 - T_1 = -13 - (-15) = -13 + 15 = 2$$
 Common difference $d = \text{Any term} - \text{Previous term}$

5 (c) (ii)

$$a = -15$$

$$T_n = a + (n-1)d$$
 2

$$d = 2$$

$$\Rightarrow T_n = -15 + (n-1)2$$

$$\Rightarrow T_n = -15 + 2n - 2$$

$$T_n = 2n - 17$$

5 (c) (iii)

$$S_n = -63$$

$$\Rightarrow n^2 - 16n = -63$$

$$\Rightarrow n^2 - 16n + 63 = 0$$

$$\Rightarrow (n-7)(n-9) = 0$$

$$\therefore n = 7, 9$$