Sequences \& Series (Q 5, Paper 1)

2007

5 (a) The nth term of a sequence is given by $T_{n}=1-n$.
(i) Find T_{5}, the fifth term.
(ii) Find $T_{5}-T_{10}$ where T_{10} is the tenth term.
(b) The first term of an arithmetic series is 3 and the common difference is 4 .
(i) Find, in terms of n, an expression for T_{n}, the nth term.
(ii) How many terms of the series are less than 200?
(iii) Find the sum of these terms.
(c) The first two terms of a geometric series are $\frac{1}{3}+\frac{1}{9}+\ldots$
(i) Find r, the common ratio.
(ii) Find an expression for S_{n}, the sum of the first n terms.

Write your answer in the form $\frac{1}{k}\left(1-\frac{1}{3^{n}}\right)$ where $k \in \mathbf{N}$.
(iii) The sum of the first n terms of the geometric series $\frac{p}{3}+\frac{p}{9}+\ldots$. is $1-\frac{1}{3^{n}}$.

Find the value of p.

Solution

5 (a) (i)
$T_{n}=1-n \Rightarrow T_{5}=1-(5)=-4$

Put a bracket around n on each side and substitute in the little number (subscript).

5 (a) (ii)
$T_{10}=1-(10)=-9$
$\Rightarrow T_{5}-T_{10}=-9-(-4)=-9+4=-5$

5 (b)

Arithmetic series
$a=3$
General term: $T_{n}=a+(n-1) d$

$d=4$
5 (b) (i)
$T_{n}=a+(n-1) d=3+(n-1) 4$
$=3+4 n-4$
$=4 n-1$

5 (b) (ii)

You are being asked to solve $T_{n}<200$ for n.
$T_{n}<200 \Rightarrow 4 n-1<200$
$\Rightarrow 4 n<200+1$
$\Rightarrow 4 n<201$
$\Rightarrow n<\frac{201}{4}$
$\Rightarrow n<50.25$
n must be a whole positive number. Therefore, $n=50$.
5 (b) (iii)

$$
\text { Summing formula: } S_{n}=\frac{n}{2}[2 a+(n-1) d] \ldots . . .3
$$

You are asked to find the sum of 50 terms $(n=50)$ where $a=3$ and $d=4$.
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow S_{50}=\frac{50}{2}[2(3)+(50-1) 4]$
$\Rightarrow S_{50}=25[6+49(4)]$
$\Rightarrow S_{50}=25[6+196]$
$\Rightarrow S_{50}=25[202]$
$\Rightarrow S_{50}=5050$
5 (c)
Geometric series: $\frac{1}{3}+\frac{1}{9}+\ldots$.

5 (c) (i)

$r=\frac{\frac{1}{9}}{\frac{1}{3}}=\frac{1}{9} \times \frac{3}{1}=\frac{1}{3}$

$$
\text { Any term } \div \text { Previous term }=\frac{T_{n}}{T_{n-1}}=\text { Constant }(r)
$$

5 (c) (ii)

$$
\begin{aligned}
& a=\frac{1}{3} \\
& r=\frac{1}{3}
\end{aligned} \quad \text { Summing formula: } S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}
$$

$\therefore S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{\left(\frac{1}{3}\right)\left(1-\left(\frac{1}{3}\right)^{n}\right)}{1-\left(\frac{1}{3}\right)}$
$=\frac{\left(\frac{1}{3}\right)\left(1-\left(\frac{1}{3}\right)^{n}\right)}{\frac{2}{3}}$
$=\frac{1}{2}\left(1-\frac{1}{3^{n}}\right)$

5 (c) (iii)

Geometric series: $\frac{p}{3}+\frac{p}{9}+\ldots$
$a=\frac{p}{3}$
$r=\frac{\frac{p}{9}}{\frac{p}{3}}=\frac{1}{3}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{\left(\frac{p}{3}\right)\left(1-\left(\frac{1}{3}\right)^{n}\right)}{1-\frac{1}{3}}$
$=\frac{\left(\frac{p}{3}\right)\left(1-\left(\frac{1}{3}\right)^{n}\right)}{\frac{2}{3}}$
$=\left(\frac{p}{2}\right)\left(1-\left(\frac{1}{3}\right)^{n}\right)$
$=\frac{p}{2}\left(1-\frac{1}{3^{n}}\right)$

You are told that the sum of the first n terms is given by $1-\frac{1}{3^{n}}$.
$\therefore \frac{p}{2}\left(1-\frac{1}{3^{n}}\right)=1-\frac{1}{3^{n}}$
$\Rightarrow \frac{p}{2}=1$
$\Rightarrow p=2$

