SEQUENCES & SERIES (Q 5, PAPER 1)

2006

- 5 (a) The first term of an arithmetic sequence is 17 and the common difference is -8. Find, in terms of n, an expression for T_n , the nth term.
 - (b) The *n*th term of a geometric series is

$$T_n = 4(\frac{1}{2})^n$$
.

- (i) Find a, the first term.
- (ii) Find r, the common ratio.
- (iii) Write $4 S_{10}$ in the form $\frac{1}{2^k}$, $k \in \mathbb{N}$, where S_{10} is the sum of the first ten terms.
- (c) The first three terms of an arithmetic sequence are

$$h+3$$
, $5h-2$, $6h-13$

where h is a real number.

- (i) Find the value of h.
- (ii) Hence, write down the value of each of the first three terms.
- (iii) Find the value of the eleventh term.

SOLUTION

5 (a)

General term:
$$T_n = ar^{n-1}$$

The first term, a, is 17. The common difference is -8.

$$a = 17$$

$$d = -8$$

$$T_n = a + (n-1)d$$

$$\Rightarrow T_n = 17 + (n-1)(-8)$$

$$\Rightarrow T_n = 17 - 8n + 8$$

$$\Rightarrow T_n = 25 - 8n$$

5 (b) (i)

Replace n by 1 in the general term to find a.

$$a = T_1$$

$$T_n = 4(\frac{1}{2})^n$$

$$\Rightarrow T_1 = 4\left(\frac{1}{2}\right)^1 = 4\left(\frac{1}{2}\right) = 2$$

5 (b) (ii)

To find the common ratio, r, find the second term, T_2 , and then divide the second term by the first term.

$$T_n = 4(\frac{1}{2})^n$$

 $\Rightarrow T_2 = 4(\frac{1}{2})^2 = 4(\frac{1}{4}) = 1$
 $\therefore r = \frac{T_2}{T_1} = \frac{1}{2}$

5 (b) (iii)

$$n = 10$$

$$a = 2$$

$$r = \frac{1}{2}$$

$$\therefore S_{10} = \frac{a(1 - r^{n})}{(1 - r)}$$

$$\Rightarrow S_{10} = \frac{2(1 - (\frac{1}{2})^{10})}{(1 - \frac{1}{2})} = \frac{2(1 - (\frac{1}{2})^{10})}{\frac{1}{2}}$$

$$\Rightarrow S_{10} = 4(1 - (\frac{1}{2})^{10}) = 4 - 4(\frac{1}{2})^{10}$$

$$\therefore 4 - S_{10} = 4 - 4 + 4(\frac{1}{2})^{10}$$

$$= 4(\frac{1}{2})^{10} = 2^{2} \times \frac{1}{2^{10}} = \frac{2^{2}}{2^{10}}$$

5 (c)
$$h+3$$
, $5h-2$, $6h-13$

TEST: Any term – Previous term = $T_n - T_{n-1}$ = Constant (d)

As it is an arithmetic sequence, subtracting any two consecutive terms gives you the same constant. This constant is the common difference, d.

$$5h-2-(h+3) = 6h-13-(5h-2)$$

$$\Rightarrow 5h-2-h-3 = 6h-13-5h+2$$

$$\Rightarrow 4h-5 = h-11$$

$$\Rightarrow 4h-h = -11+5$$

$$\Rightarrow 3h = -6$$

$$\Rightarrow h = -2$$
5 (c) (ii)
$$h+3, 5h-2, 6h-13$$

$$= (-2)+3, 5(-2)-2, 6(-2)-13$$

$$= -2+3, -10-2, -12-13$$

=1, -12, -25

5 (c) (ii)

a = 1,

General term: $T_n = ar^{n-1}$

$$=ar^{n-1}$$
.

$$n = 11$$

$$T_n = a + (n-1)d$$

d = 12 - 1 = -13

$$\Rightarrow T_n = 1 + (11 - 1)(-13)$$

$$\Rightarrow T_n = 1 + (10)(-13)$$

$$\Rightarrow T_n = 1 - 130 = -129$$