Sequences \& Series (Q 5, Paper 1)

2005
5 (a) The first term of an arithmetic sequence is 9 and the second term is 13.
(i) Find the common difference.
(ii) Find the third term.
(b) The sum of the first n terms of an arithmetic series is given by $S_{n}=n^{2}+n$.
(i) Find a, the first term.
(ii) Find S_{2}, the sum of the first two terms.
(iii) Find d, the common difference.
(iv) Write down the first five terms of the series.
(c) In a geometric sequence of positive terms, the third term is $\frac{1}{4}$ and the fifth term is $\frac{1}{16}$.
(i) Find r, the common ratio.
(ii) Find a, the first term.
(iii) How many terms of the sequence are greater than $0 \cdot 01$?

Solution

5 (a)
Arithmetic sequence: 9, 13,...
5 (a) (i)

$$
d=\text { Common difference }=\text { Any term }- \text { Previous term }
$$

$d=13-9=4$

5 (a) (ii)

Keep on adding the common difference, 4, to each term to get the next term.
Arithmetic sequence: 9, 13, 17, 21,.....
You can see the third term is 17 .
5 (b)
$S_{n}=n^{2}+n$
5 (b) (i)
$S_{1}=T_{1}=a$
$S_{1}=T_{1}$ for all sequences and series.
$\Rightarrow S_{1}=(1)^{2}+(1)=1+1=2$
5 (b) (ii)
$S_{2}=(2)^{2}+(2)=4+2=6$

5 (b) (iii)

$S_{n}-S_{n-1}=T_{n} \Rightarrow S_{2}-S_{1}=T_{2}$
$\Rightarrow T_{2}=6-2=4$

$$
S_{n}-S_{n-1}=T_{n}
$$

1
The first two terms of an arithmetic sequence are: $2,4, \ldots$

$$
d=\text { Common difference }=\text { Any term }- \text { Previous term }
$$

$\therefore d=4-2=2$

5 (b) (iv)

Keep on adding the common difference, 2 , to each term to get the next term.
The first five terms of the arithmetic sequence are $2,4,6,8,10$.
5 (c)
General term: \square 4

Ex. The tenth term of a geometric sequence: $T_{10}=a r^{9}$
5 (c) (i)
$T_{3}=a r^{n-1}=a r^{2}=\frac{1}{4}$
$T_{5}=a r^{n-1}=a r^{4}=\frac{1}{16}$$\longleftarrow \quad$ Dividing $\Rightarrow \frac{a r^{4}}{a r^{2}}=\frac{\frac{1}{16}}{\frac{1}{4}} \Rightarrow r^{2}=\frac{1}{16} \times \frac{4}{1}=\frac{1}{4} \Rightarrow r= \pm \frac{1}{2}$
As it is a geometric sequence of positive terms take $r=\frac{1}{2}$.
5 (c) (ii)
$a r^{2}=\frac{1}{4} \Rightarrow a\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
$\Rightarrow a\left(\frac{1}{4}\right)=\frac{1}{4} \Rightarrow a=1$

5 (c) (iii)

How many terms are greater that $0.01=\frac{1}{100}$?
Write them out and count the number of the terms that are greater than 0.01 .
$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \frac{1}{128}, \ldots$
You can see that each of the first seven terms are greater than 0.01 .

