Sequences \& Series (Q 5, Paper 1)

2004
5 (a) The first term of an arithmetic sequence is 40 and the common difference is -5 . Write down the first five terms of the sequence.
(b) The nth term of an arithmetic series is given by $T_{n}=1+5 n$.
(i) The first term is a and the common difference is d.

Find the value of a and the value of d.
(ii) Find the value of n for which $T_{n}=156$.
(iii) Find S_{12}, the sum of the first 12 terms.
(c) The first term of a geometric series is 1 and the common ratio is -4 .
(i) Write down the first three terms of the series.
(ii) Find S_{6}, the sum of the first 6 terms.
(iii) Show that $16 S_{4}-3=S_{6}$, where S_{4} is the sum of the first 4 terms.

Solution

5 (a)

Start with 40 and keep on taking away 5.
Arithmetic sequence: 40, 35, 30, 25, 20,...
5 (b) (i)
Generate the first 2 terms of the arithmetic sequence by letting $n=1$ and then letting $n=2$.
$T_{n}=1+5 n$
$\Rightarrow T_{1}=1+5(1)=1+5=6$
$\Rightarrow T_{2}=1+5(2)=1+10=11$
Arithmetic sequence: 6, 11,....
$d=$ Common difference $=$ Any term - Previous term
First term $a=6$
Common difference $d=11-6=5$
5 (b) (ii)
$T_{n}=156 \Rightarrow 1+5 n=156$
$\Rightarrow 5 n=156-1$
$\Rightarrow 5 n=155$
$\Rightarrow n=\frac{155}{5}$
$\Rightarrow n=31$

5 (b) (iii)

Summing formula:

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

$a=6, d=5, n=12$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow S_{12}=\frac{12}{2}[2(6)+(12-1)(5)]$
$\Rightarrow S_{12}=6[12+(11)(5)]$
$\Rightarrow S_{12}=6[12+55]$
$\Rightarrow S_{12}=6[67]$
$\Rightarrow S_{12}=402$
5 (c) (i)
Write down the first term and keep on multiplying by the common ratio.
$a=1, r=-4$
Geometric series: $1,-4,16$,..

5 (c) (ii)
$n=6, a=1, r=-4$ Summing formula: $S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
$\Rightarrow S_{6}=\frac{1\left(1-(-4)^{6}\right)}{(1-(-4))}$
$\Rightarrow S_{6}=\frac{(1-4096)}{5}$
$\Rightarrow S_{6}=\frac{-4095}{5}=-819$

5 (c) (iii)

$$
\begin{aligned}
& n=4, a=1, r=-4 \\
& 16 S_{4}-3=16\left(\frac{1\left(1-(-4)^{4}\right)}{(1-(-4))}\right)-3 \\
& =16\left(\frac{(1-256)}{5}\right)-3 \\
& =16\left(\frac{-255}{5}\right)-3 \\
& =16(-51)-3 \\
& =-816-3=-819
\end{aligned}
$$

