Sequences \& Series (Q 5, Paper 1)

2003
5 (a) The first term of a geometric sequence is 4 and the commom ratio is 1.5 .
Write down the next three terms of the sequence.
(b) The first two terms of a geometric series are $32+8+\ldots$
(i) What us the value of r, the common ratio?
(ii) Find an expression for S_{n}, the sum of the first n terms.
(iii) Find S_{10}, the sum of the first 10 terms.

Given your answer correct to four decimal places.
(c) The fifth term of an arithmetic series is 21 and the tenth term is 11 .
(i) Find the first term and the common difference.
(ii) Find the sum of the first twenty terms.
(iii) For what value of $n>0$ is the sum of the first n terms equal to zero?

Solution

5 (a)
Write down the first term and keep on multiplying by the common ratio, r, to generate the terms of the geometric sequence.
$4,6, \frac{27}{2}, \ldots$
5 (b) (i)
Geometric series: $32+8+\ldots$.

$$
r=\text { Common ratio }=\text { Any term } \div \text { Previous term }
$$

$\therefore r=\frac{8}{32}=\frac{1}{4}$
5 (b) (ii)
$a=32, r=\frac{1}{4}$
Summing formula: $S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$....... 5
$S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
$\Rightarrow S_{n}=\frac{32\left(1-\left(\frac{1}{4}\right)^{n}\right)}{\left(1-\frac{1}{4}\right)}$
$\Rightarrow S_{n}=\frac{32\left(1-\left(\frac{1}{4}\right)^{n}\right)}{\frac{3}{4}}$
$\Rightarrow S_{n}=\frac{128}{3}\left(1-\left(\frac{1}{4}\right)^{n}\right)$
5 (b) (iii)
$S_{10}=\frac{128}{3}\left(1-\left(\frac{1}{4}\right)^{10}\right)=42.6666$ [Use calculator]

5 (c) (i)

Ex. The fifty-sixth term of an arithmetic sequence: $T_{56}=a+55 d$

$$
\begin{aligned}
& T_{5}=a+4 d=21 \ldots . .(\mathbf{1}) \\
& T_{10}=\frac{a+9 d=11 \ldots .(\mathbf{2})}{-5 d=10 \Rightarrow d=-2}
\end{aligned}
$$

Substitute this value of d back into Eqn. (1): $a+4(-2)=21 \Rightarrow a-8=21 \Rightarrow a=29$
5 (c) (ii)
Summing formula:
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$a=29, d=-2, n=10$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow S_{n}=\frac{10}{2}[2(29)+(10-1)(-2)]$
$\Rightarrow S_{n}=5[58+(9)(-2)]$
$\Rightarrow S_{n}=5[58-18]$
$\Rightarrow S_{n}=5[40]=200$

5 (c) (iii)

Put $S_{n}=0$ and solve for n.
$a=29, d=-2$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow S_{n}=\frac{n}{2}[2(29)+(n-1)(-2)]=0$
$\Rightarrow \frac{n}{2}[58+(n-1)(-2)]=0$
$\Rightarrow \frac{n}{2}[58-2 n+2]=0$
$\Rightarrow \frac{n}{2}[60-2 n]=0$
$\Rightarrow n[30-n]=0$ [Set each factor equal to zero and solve for n.]
$\Rightarrow n=0,30$
As $n>0$, the answer is $n=30$.

