SEQUENCES & SERIES (Q 5, PAPER 1)

2000

2000	
5 (a)	The <i>n</i> th term of a sequence is given by $T_n = n^2 + 1$.
	(i) Write down the first three terms of the sequence.
	(ii) Show that $T_1 + T_2 + T_3 = T_4$.
(b)	 The first term of a geometric series is 1 and the common ratio is ¹¹/₁₀. (i) Write down the second, thirds and fourth terms of the series.
	(ii) Calculate S_4 , the sum of the first four terms. Give your answer as a decimal.
(c)	The first three terms of an arithmetic series are $5 + 10 + 15 +$ (i) Find, in terms of <i>n</i> , an expression for T_n , the <i>n</i> th term.
	(ii) Find, in terms of <i>n</i> , an expression for S_n , the sum to <i>n</i> terms.
	(iii) Using your expression for S_n , find the sum of the natural numbers that are both multiples of 5 and smaller than 1000.
Solution	
5 (a) (i)	
$T_n = n^2$	+1
$\Rightarrow I_1 = (1) + 1 = 1 + 1 = 2$	
$\Rightarrow I_2 = (2)^2 + 1 = 4 + 1 = 5$	
$\Rightarrow T_3 = (3)^2 + 1 = 9 + 1 = 10$	
Arithmetic sequence: 2, 5, 10	
5(a)(b)	
$I_n = n + 1$	
$\Rightarrow I_4 = (4)^2 + 1 = 16 + 1 = 17$	
$T_1 + T_2 + T_3 = 2 + 5 + 10 = 17$	
$\therefore T_1 + T$	$T_2 + T_3 = T_4$
5 (b) (i) To generate the terms of a geometric series multiply each term by the ratio to get the next term.	
$a = T_1 = 1$	
$T_2 = 1 \times \frac{11}{10} = \frac{11}{10}$	
$T_3 = \frac{11}{10} \times \frac{11}{10} = \frac{121}{100}$	
$T_4 = \frac{121}{100}$	$\times \frac{11}{10} = \frac{1331}{1000}$
5 (b) (ii)	
$S_4 = T_1 + T_2 + T_3 + T_4 = 1 + \frac{11}{10} + \frac{121}{100} + \frac{1331}{1000} = 1 + 1.1 + 1.21 + 1.331 = 1.641$	

5 (c) (i) a = 5, d = 5 General term: $T_n = a + (n-1)d$ 2 $T_n = a + (n-1)d$ $\Rightarrow T_n = 5 + (n-1)(5)$ $\Rightarrow T_n = 5 + 5n - 5$ $\Rightarrow T_n = 5n$ 5 (c) (ii) a = 5, d = 5 Summing formula: $S_n = \frac{n}{2}[2a + (n-1)d]$ 3 $S_n = \frac{n}{2}[2a + (n-1)d]$ $\Rightarrow S_n = \frac{n}{2}[2(5) + (n-1)(5)]$ $\Rightarrow S_n = \frac{n}{2}[10 + 5n - 5]$ $\Rightarrow S_n = \frac{n}{2}[5n + 5]$

5 (c) (iii)

The series contains terms that are multiples of 5. Put T_n equal to 1000 and solve for *n*. This will tell you the number of terms that are smaller than 1000. Now you know the number of terms you need to add together.

 $T_n = 5n$ $\Rightarrow 5n = 1000$ $\Rightarrow n = 200$

The 200th. term is 1000. Therefore, 199 terms are less than 1000. Add together the first 199 terms.

$$a = 5, d = 5, n = 199$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\Rightarrow S_{199} = \frac{199}{2} [2(5) + (199 - 1)(5)]$$

$$\Rightarrow S_{199} = \frac{199}{2} [10 + (198)(5)]$$

$$\Rightarrow S_{199} = \frac{199}{2} [10 + 990]$$

$$\Rightarrow S_{199} = \frac{199}{2} [1000]$$

$$\Rightarrow S_{109} = 199 [500] = 99,500$$