Sequences \& Series (Q 5, Paper 1)

2000
5 (a) The nth term of a sequence is given by $T_{n}=n^{2}+1$.
(i) Write down the first three terms of the sequence.
(ii) Show that $T_{1}+T_{2}+T_{3}=T_{4}$.
(b) The first term of a geometric series is 1 and the common ratio is $\frac{11}{10}$.
(i) Write down the second, thirds and fourth terms of the series.
(ii) Calculate S_{4}, the sum of the first four terms. Give your answer as a decimal.
(c) The first three terms of an arithmetic series are $5+10+15+\ldots$.
(i) Find, in terms of n, an expression for T_{n}, the nth term.
(ii) Find, in terms of n, an expression for S_{n}, the sum to n terms.
(iii) Using your expression for S_{n}, find the sum of the natural numbers that are both multiples of 5 and smaller than 1000.
Solution
5 (a) (i)
$T_{n}=n^{2}+1$
$\Rightarrow T_{1}=(1)^{2}+1=1+1=2$
$\Rightarrow T_{2}=(2)^{2}+1=4+1=5$
$\Rightarrow T_{3}=(3)^{2}+1=9+1=10$
Arithmetic sequence: 2, 5, 10
5 (a) (ii)
$T_{n}=n^{2}+1$
$\Rightarrow T_{4}=(4)^{2}+1=16+1=17$
$T_{1}+T_{2}+T_{3}=2+5+10=17$
$\therefore T_{1}+T_{2}+T_{3}=T_{4}$
5 (b) (i)
To generate the terms of a geometric series multiply each term by the ratio to get the next term.
$a=T_{1}=1$
$T_{2}=1 \times \frac{11}{10}=\frac{11}{10}$
$T_{3}=\frac{11}{10} \times \frac{11}{10}=\frac{121}{100}$
$T_{4}=\frac{121}{100} \times \frac{11}{10}=\frac{1331}{1000}$
5 (b) (ii)
$S_{4}=T_{1}+T_{2}+T_{3}+T_{4}=1+\frac{11}{10}+\frac{121}{100}+\frac{1331}{1000}=1+1.1+1.21+1.331=1.641$

$$
\begin{aligned}
& 5 \text { (c) (i) } \\
& \begin{array}{l}
a=5, d=5 \\
T_{n}=a+(n-1) d \\
\Rightarrow T_{n}=5+(n-1)(5) \\
\Rightarrow T_{n}=5+5 n-5 \\
\Rightarrow T_{n}=5 n
\end{array} \quad \text { General term: } T_{n}=a+(n-1) d \ldots . . .2
\end{aligned}
$$

5 (c) (ii)
$a=5, d=5 \quad$ Summing formula: $S_{n}=\frac{n}{2}[2 a+(n-1) d] \ldots3$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow S_{n}=\frac{n}{2}[2(5)+(n-1)(5)]$
$\Rightarrow S_{n}=\frac{n}{2}[10+5 n-5]$
$\Rightarrow S_{n}=\frac{n}{2}[5 n+5]$

5 (c) (iii)

The series contains terms that are multiples of 5 . Put T_{n} equal to 1000 and solve for n. This will tell you the number of terms that are smaller than 1000 . Now you know the number of terms you need to add together.
$T_{n}=5 n$
$\Rightarrow 5 n=1000$
$\Rightarrow n=200$
The 200th. term is 1000. Therefore, 199 terms are less than 1000. Add together the first 199 terms.
$a=5, d=5, n=199$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow S_{199}=\frac{199}{2}[2(5)+(199-1)(5)]$
$\Rightarrow S_{199}=\frac{199}{2}[10+(198)(5)]$
$\Rightarrow S_{199}=\frac{199}{2}[10+990]$
$\Rightarrow S_{199}=\frac{199}{2}[1000]$
$\Rightarrow S_{199}=199[500]=99,500$

