Sequences \& Series (Q 5, Paper 1)

1999

5 (a) The nth term of a sequence is given by

$$
T_{n}=\frac{n}{n+1} .
$$

(i) Find T_{2}, the second term.
(ii) Show that $T_{2}+T_{3}>1$.
(b) The first two terms of a geometric series are $2+\frac{2}{3}+\ldots$
(i) Find r, the common ratio.
(ii) Write down the third and fourth terms of the series.
(iii) Show that $S_{6^{\prime}}$, the sum to 6 terms, is $3-\frac{1}{3^{5}}$.
(c) The nth term of a series is given by

$$
T_{n}=4 n+1 .
$$

(i) Write down, in terms of n, an expression for T_{n-1}, the ($n-1$)st. term.
(ii) Show that the series is arithmetic.
(iii) Find S_{20}, the sum of the first 20 terms of the series.

Solution

5 (a) (i)
$T_{n}=\frac{n}{n+1}$
$\Rightarrow T_{2}=\frac{(2)}{(2)+1}=\frac{2}{3}$
5 (a) (ii)
$T_{n}=\frac{n}{n+1}$
$\Rightarrow T_{3}=\frac{(3)}{(3)+1}=\frac{3}{4}$
$\therefore T_{2}+T_{3}=\frac{2}{3}+\frac{3}{4}=\frac{17}{12}=1 \frac{5}{12}>1$

5 (b) (i)

$$
r=\text { Common ratio }=\text { Any term } \div \text { Previous term }
$$

$r=\frac{\frac{2}{3}}{2}=\frac{2}{3} \times \frac{1}{2}=\frac{1}{3}$
5 (b) (ii)
To generate the terms of a geometric sequence, keep on multiplying each term by the common ratio r to get the next term.
$T_{3}=\frac{2}{3} \times \frac{1}{3}=\frac{2}{9}$
$T_{4}=\frac{2}{9} \times \frac{1}{3}=\frac{2}{27}$
5 (b) (iii)
$a=2, r=\frac{1}{3}, n=6 \quad$ Summing formula: $S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$...... 5
$S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)}$
$\Rightarrow S_{6}=\frac{2\left(1-\left(\frac{1}{3}\right)^{6}\right)}{\left(1-\left(\frac{1}{3}\right)\right)}$
$\Rightarrow S_{6}=\frac{2\left(1-\left(\frac{1}{3}\right)^{6}\right)}{\left(1-\left(\frac{1}{3}\right)\right)}$
$\Rightarrow S_{6}=\frac{2\left(1-\left(\frac{1}{3}\right)^{6}\right)}{\frac{2}{3}} \quad$ [Note: $\frac{2}{\frac{2}{3}}=2 \times \frac{3}{2}=3$]
$\Rightarrow S_{6}=3\left(1-\left(\frac{1}{3}\right)^{6}\right)$
$\Rightarrow S_{6}=3-3\left(\frac{1}{3}\right)^{6}$
[Note: $3\left(\frac{1}{3}\right)^{6}=3^{1} \times \frac{1}{3^{6}}=\frac{1}{3^{5}}$]
$\Rightarrow S_{6}=3-\frac{1}{3^{5}}$

5 (c) (i)

Replace n by ($n-1$).
$T_{n}=4 n+1$
$\Rightarrow T_{n-1}=4(n-1)+1$
$\Rightarrow T_{n-1}=4 n-4+1$
$\Rightarrow T_{n-1}=4 n-3$
5 (c) (ii) Test that a series is arithmetic: Any term $-\operatorname{Previous~term~}=T_{n}-T_{n-1}=$ Constant (d)
$T_{n}-T_{n-1}=4 n+1-(4 n-3)$
$=4 n+1-4 n+3$
$=4$
Therefore, the series is arithmetic because 4 is a constant. This constant is the common difference d.

5 (c) (iii)

$$
\begin{equation*}
\text { Summing formula: } S_{n}=\frac{n}{2}[2 a+(n-1) d] \tag{3}
\end{equation*}
$$

You need to find the first term, a. You do this by letting $n=1$ in the general term.
$T_{n}=4 n+1$
$\Rightarrow T_{1}=4(1)+1=5$
$a=5, d=4, n=20$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow S_{20}=\frac{20}{2}[2(5)+(20-1)(4)]$
$\Rightarrow S_{20}=10[10+(19)(4)]$
$\Rightarrow S_{20}=10[10+76]$
$\Rightarrow S_{20}=10[86]=860$

