SEQUENCES & SERIES (Q 5, PAPER 1)

1997

(a) $T_1 + T_2 + T_3 + \dots$ is a geometric series. 5 The first term, T_1 , is 1 and the common ratio is 2. Show that $T_3 + T_5 = 2(T_2 + T_4).$ (b) The first four terms of an arithmetic sequence are given as a, -4, b, 6,.... Find (i) the value of *a* and the value of *b* (ii) T_5 , the fifth term. (c) In an arithmetic series $S_n = n^2 + n,$ where S_n is the sum to the first *n* terms. Write down (i) S_{10} , the sum to 10 terms (ii) S_{11} , the sum to 11 terms (iii) T_{11} , the 11th. term. **SOLUTION** 5 (a) To produce a GEOMETRIC SEQUENCE, start with a number, a, and keep on multiplying by a number, r, forever. Geometric series: 1 + 2 + 4 + 8 + 16 + ... $T_1 = 1, T_2 = 2, T_3 = 4, T_4 = 8, T_5 = 16$ $T_3 + T_5 = 4 + 16 = 20$ $2(T_2 + T_4) = 2(2 + 8) = 2(10) = 20$ $\therefore T_3 + T_5 = 2(T_2 + T_4)$ 5 (b) (i) d =Common difference = Any term – Previous term The difference between the fourth and second terms is 2d. 2d = 6 - (-4) = 6 + 4 = 10 $\therefore d = 5$ You keep on adding on 5 to generate each term in the sequence. Arithmetic sequence: $-9, -4, 1, 6, \dots$ $\therefore a = -9, b = 1$ 5 (b) (ii) $T_5 = 11$ [Add 5 on to the fourth term to get the fifth term.]

5 (c) (i) $S_n = n^2 + n$ $\Rightarrow S_{10} = (10)^2 + (10)$ $\Rightarrow S_{10} = 100 + 10$ $\Rightarrow S_{10} = 110$ 5 (c) (ii) $S_n = n^2 + n$ $\Rightarrow S_{11} = (11)^2 + (11)$ $\Rightarrow S_{11} = 121 + 11$ $\Rightarrow S_{11} = 132$ 5 (c) (iii) $S_n - S_{n-1} = T_n \quad \dots \qquad 1$ $T_{11} = S_{11} - S_{10}$ $\Rightarrow T_{11} = 132 - 110 = 22$