Sequences \& Series (Q 5, Paper 1)

1997

5 (a) $T_{1}+T_{2}+T_{3}+\ldots$ is a geometric series.
The first term, T_{1}, is 1 and the common ratio is 2 .
Show that

$$
T_{3}+T_{5}=2\left(T_{2}+T_{4}\right) .
$$

(b) The first four terms of an arithmetic sequence are given as

$$
a,-4, b, 6, \ldots .
$$

Find
(i) the value of a and the value of b
(ii) T_{5}, the fifth term.
(c) In an arithmetic series

$$
S_{n}=n^{2}+n,
$$

where S_{n} is the sum to the first n terms.
Write down
(i) S_{10}, the sum to 10 terms
(ii) S_{11}, the sum to 11 terms
(iii) T_{11}, the 11th. term.

Solution

5 (a)
To produce a geometric sequence, start with a number, a, and keep on multiplying by a number, r, forever.

Geometric series: $1+2+4+8+16+\ldots$
$T_{1}=1, T_{2}=2, T_{3}=4, T_{4}=8, T_{5}=16$
$T_{3}+T_{5}=4+16=20$
$2\left(T_{2}+T_{4}\right)=2(2+8)=2(10)=20$
$\therefore T_{3}+T_{5}=2\left(T_{2}+T_{4}\right)$
5 (b) (i)

$$
d=\text { Common difference }=\text { Any term }- \text { Previous term }
$$

The difference between the fourth and second terms is $2 d$.
$2 d=6-(-4)=6+4=10$
$\therefore d=5$
You keep on adding on 5 to generate each term in the sequence.
Arithmetic sequence: $-9,-4,1,6, \ldots$.
$\therefore a=-9, b=1$
5 (b) (ii)
$T_{5}=11$ [Add 5 on to the fourth term to get the fifth term.]

$$
\begin{aligned}
& \mathbf{5} \text { (c) (i) } \\
& S_{n}=n^{2}+n \\
& \Rightarrow S_{10}=(10)^{2}+(10) \\
& \Rightarrow S_{10}=100+10 \\
& \Rightarrow S_{10}=110 \\
& \mathbf{5} \text { (c) (ii) } \\
& S_{n}=n^{2}+n \\
& \Rightarrow S_{11}=(11)^{2}+(11) \\
& \Rightarrow S_{11}=121+11 \\
& \Rightarrow S_{11}=132
\end{aligned}
$$

5 (c) (iii)

1
$T_{11}=S_{11}-S_{10}$
$\Rightarrow T_{11}=132-110=22$

