Sequences \& Series (Q 5, Paper 1)

Lesson No. 8: Geometric Series

2007

5 (c) The first two terms of a geometric series are $\frac{1}{3}+\frac{1}{9}+\ldots$
(i) Find r, the common ratio.
(ii) Find an expression for S_{n}, the sum of the first n terms.

Write your answer in the form $\frac{1}{k}\left(1-\frac{1}{3^{n}}\right)$ where $k \in \mathbf{N}$.
(iii) The sum of the first n terms of the geometric series $\frac{p}{3}+\frac{p}{9}+\ldots$ is $1-\frac{1}{3^{n}}$.

Find the value of p.

2006

5 (b) The nth term of a geometric series is
$T_{n}=4\left(\frac{1}{2}\right)^{n}$.
(i) Find a, the first term.
(ii) Find r, the common ratio.
(iii) Write $4-S_{10}$ in the form $\frac{1}{2^{k}}, k \in \mathbf{N}$, where S_{10} is the sum of the first ten terms.

2004

5 (c) The first term of a geometric series is 1 and the common ratio is -4 .
(i) Write down the first three terms of the series.
(ii) Find S_{6}, the sum of the first 6 terms.
(iii) Show that $16 S_{4}-3=S_{6}$, where S_{4} is the sum of the first 4 terms.

2003

5 (b) The first two terms of a geometric series are $32+8+\ldots$
(i) What us the value of r, the common ratio?
(ii) Find an expression for S_{n}, the sum of the first n terms.
(iii) Find S_{10}, the sum of the first 10 terms.

Given your answer correct to four decimal places.

2001

5 (b) The nth term of a geometric series is given by $T_{n}=3^{n}$.
(i) What is the value of a, the first term?
(ii) What is the value of r, the common ratio?
(iii) Show that S_{10}, the sum of the first ten terms, is $\frac{3}{2}\left(3^{10}-1\right)$.

2000
5 (b) The first term of a geometric series is 1 and the common ratio is $\frac{11}{10}$.
(i) Write down the second, thirds and fourth terms of the series.
(ii) Calculate S_{4}, the sum of the first four terms. Give your answer as a decimal.

1999

5 (b) The first two terms of a geometric series are $2+\frac{2}{3}+\ldots$
(i) Find r, the common ratio.
(ii) Write down the third and fourth terms of the series.
(iii) Show that S_{6}, the sum to 6 terms, is $3-\frac{1}{3^{5}}$.

1998

5 (b) The nth term of a geometric sequence is

$$
T_{n}=\frac{2^{n}}{3^{n}} .
$$

(i) Find the first three terms of the sequence.
(ii) Show that S_{5}, the sum of the first five terms, is $\frac{422}{243}$.

1996

5 (b) The nth term, T_{n}, of a geometric series is

$$
T_{n}=3^{n-1} .
$$

Find
(i) T_{1}, the first term
(ii) r, the common ratio
(iii) S_{n}, the sum to n terms.

Investigate if

$$
2 S_{n}-T_{n}=2 T_{n}-1 .
$$

Answers

2007 (c) (i) $\frac{1}{3}$
(ii) $\frac{1}{2}\left(1-\frac{1}{3^{n}}\right)$
(iii) $p=2$
20065 (b) (i) $a=2$
(ii) $r=\frac{1}{2}$
(iii) $\frac{1}{2^{8}}$
20045 (c) (i) 1, -4, 16
(ii) -819
20035 (b) (i) $\frac{1}{4}$
(ii) $\frac{128}{3}\left(1-\left(\frac{1}{4}\right)^{n}\right)$
(iii) $42 \cdot 6666$
20015 (b) (i) 3
(ii) 3
20005 (b) (i) $\frac{11}{10}, \frac{121}{100}, \frac{1331}{1000}$
(ii) 4.641
19995 (b) (i) $r=\frac{1}{3}$
(ii) $\frac{2}{9}, \frac{2}{27}$
19985 (b) (i) $\frac{2}{3}, \frac{4}{9}, \frac{8}{27}$
19965 (b) (i) 1
(ii) $r=3$
(iii) $S_{n}=\frac{1}{2}\left(3^{n}-1\right)$; Yes

