GEOMETRY (Q 4, PAPER 2)

Lesson No. 1: Angles and Triangles

2007

- 4 (a) In the diagram, two sides of the triangle are produced.
 - (i) Find x.
 - (ii) Find y.

SOLUTION

4 (a) (i)

[A] **STRAIGHT ANGLES**: L is a straight line. The angles on L add up to 180° .

$$\therefore A + B + C = 180^{\circ}$$

[E] ANGLES IN A TRIANGLE

THEOREM 1: The sum of degree measure of the interior angles of a triangle is 180° .

Stated mathematically: $A + B + C = 180^{\circ}$

$$A+145^{\circ}=180^{\circ}$$
 [Straight angle]

$$\Rightarrow A = 180^{\circ} - 145^{\circ} = 35^{\circ}$$

$$45^{\circ} + 35^{\circ} + x^{\circ} = 180^{\circ}$$
 [Theorem 1]

$$\Rightarrow$$
 80° + x ° = 180°

$$\therefore x^{\circ} = 100^{\circ}$$

4 (a) (ii)

$$x^{\circ} + y^{\circ} = 180^{\circ}$$
 [Straight angle]

$$\Rightarrow$$
 100° + y ° = 180°

$$\therefore y^{\circ} = 80^{\circ}$$

- 4 (a) In the diagram, the line *L* is parallel to the base of the isosceles triangle.
 - (i) Find x.
 - (ii) Find y.

SOLUTION

4 (a) (i)

ISOSCELES TRIANGLE: This is a triangle with two equal sides. The angles opposite the equal sides are equal.

[E] Angles in a Triangle

THEOREM 1: The sum of degree measure of the interior angles of a triangle is 180° .

Stated mathematically: $A + B + C = 180^{\circ}$

The angles opposite the equal sides are equal.

They are both x° .

$$x^{\circ} + x^{\circ} + 50^{\circ} = 180^{\circ}$$
 [Theorem 1]
 $\Rightarrow 2x^{\circ} = 130^{\circ}$

$$\therefore x^{\circ} = 65^{\circ}$$

4 (a) (ii)

[C] ALTERNATE ANGLES: K and L are two parallel lines, i.e. $K \parallel L$. A line M cutting these parallel lines is called a transversal. The inside opposite angles are equal and are called alternate angles. Therefore, A = D and B = C.

[D] **Corresponding Angles**: On the same diagram, F = D, E = C, A = G and B = H. These are called corresponding angles.

$$x^{\circ} = y^{\circ}$$
 [Alternate angles.]

$$\therefore y^{\circ} = 65^{\circ}$$

- 4 (a) In the diagram, |ab| = |ac| and $|\angle bad| = 102^{\circ}$.
 - (i) Find $|\angle cab|$.
 - (ii) Find $|\angle abc|$.

Solution

4 (a) (i)

[A] **Straight ANGLES**: L is a straight line. The angles on L add up to 180° .

$$A + B + C = 180^{\circ}$$

$$x^{\circ} + 102^{\circ} = 180^{\circ}$$
 [Straight angle.]

$$\Rightarrow x^{\circ} = 180^{\circ} - 102^{\circ}$$

$$\therefore x^{\circ} = |\angle cab| = 78^{\circ}$$

4 (a) (ii)

$$|\angle abc| = |\angle bca| = y^{\circ}$$
 [Isosceles triangle.]

ISOSCELES TRIANGLE: This is a triangle with two equal sides. The angles opposite the equal sides are equal.

[E] ANGLES IN A TRIANGLE

THEOREM 1: The sum of degree measure of the interior angles of a triangle is 180° .

Stated mathematically: $A + B + C = 180^{\circ}$

$$78^{\circ} + y^{\circ} + y^{\circ} = 180^{\circ}$$
 [Theorem 1]

$$\Rightarrow 2y^{\circ} = 180^{\circ} - 78^{\circ}$$

$$\Rightarrow 2y^{\circ} = 102^{\circ}$$

$$\therefore y^{\circ} = |\angle abc| = 51^{\circ}$$

4 (a) In the triangle abc, |ad| = |bd|,

$$|\angle abd| = |\angle dbc|$$
 and $|\angle dab| = 48^{\circ}$.

Find $|\angle dcb|$.

SOLUTION

ISOSCELES TRIANGLE: This is a triangle with two equal sides. The angles opposite the equal sides are equal.

$$|\angle dab| = |\angle dba| = 48^{\circ}$$
 [Isosceles triangle]

$$|\angle dba| = |\angle dbc| = 48^{\circ}$$
 [Given]

[E] ANGLES IN A TRIANGLE

THEOREM 1: The sum of degree measure of the interior angles of a triangle is 180°.

Stated mathematically: $A + B + C = 180^{\circ}$

$$|\angle adb| + 48^{\circ} + 48^{\circ} = 180^{\circ}$$
 [Theorem 1]

$$| \angle adb | = 180^{\circ} - 96^{\circ} = 84^{\circ}$$

[A] **STRAIGHT** ANGLES: L is a straight line. The angles on L add up to 180° .

$$A + B + C = 180^{\circ}$$

$$\left| \angle cdb \right| + 84^{\circ} = 180^{\circ}$$
 [Straight angle]

$$\Rightarrow |\angle cdb| = 180^{\circ} - 84^{\circ}$$

$$\therefore |\angle cdb| = 96^{\circ}$$

$$48^{\circ} + 96^{\circ} + |\angle dcb| = 180^{\circ}$$
 [Theorem 1]

$$\Rightarrow |\angle dcb| = 180^{\circ} - 48^{\circ} - 96^{\circ}$$

$$\therefore |\angle dcb| = 36^{\circ}$$

4 (a) |pr| = |qr| = |rs| and $|\angle prq| = 50^{\circ}$.

Find

- (i) $|\angle pqr|$
- (ii) $|\angle psr|$.

SOLUTION

4 (a) (i)

ISOSCELES TRIANGLE: This is a triangle with two equal sides. The angles opposite the equal sides are equal.

[E] Angles in a Triangle

THEOREM 1: The sum of degree measure of the interior angles of a triangle is 180° .

Stated mathematically: $A + B + C = 180^{\circ}$

$$|\angle pqr| = |\angle qpr| = x^{\circ}$$
 [Isosceles triangle]

$$x^{\circ} + x^{\circ} + 50^{\circ} = 180^{\circ}$$
 [Theorem 1]

$$\Rightarrow 2x^{\circ} = 130^{\circ}$$

$$\therefore x^{\circ} = |\angle pqr| = 65^{\circ}$$

4 (a) (ii)

[A] **STRAIGHT** ANGLES: L is a straight line. The angles on L add up to 180° .

$$A + B + C = 180^{\circ}$$

$$50^{\circ} + |\angle prs| = 180^{\circ}$$
 [Straight angle]

$$\Rightarrow |\angle prs| = 180^{\circ} - 50^{\circ}$$

$$\therefore |\angle prs| = 130^{\circ}$$

$$|\angle psr| = |\angle rps| = y^{\circ}$$
 [Isosceles triangle]

$$y^{\circ} + y^{\circ} + 130^{\circ} = 180^{\circ}$$
 [Theorem 1]

$$\Rightarrow 2y^{\circ} = 50^{\circ}$$

$$\therefore y^{\circ} = |\angle psr| = 25^{\circ}$$