Geometry (Q 4, Paper 2)

2006

4 (a) In the diagram $L \| K$.
Find the value of x.

(b) Prove that if the lengths of two sides of a triangle are unequal, then the degreemeasures of the angles opposite to them are unequal, with the greater angle opposite to the longer side.
(c) (i) Construct a triangle $a b c$ in which $|a b|=6.5 \mathrm{~cm},|b c|=2.5 \mathrm{~cm}$ and $|a c|=6 \mathrm{~cm}$.
(ii) Construct the image of the triangle $a b c$ under the enlargement of scale factor 1.8 and centre c.
(iii) Given that the area of triangle $a b c$ is $7.5 \mathrm{~cm}^{2}$, find the area of the image triangle.

Solution

4 (a)
Theorem 4: A line which is parallel to one side of a triangle and cuts a second side will cut the third side in the same proportion as the second.

You can use any combination of these formulae:

$$
\begin{aligned}
& \frac{|a d|}{|d b|}=\frac{|a e|}{|e c|}=\frac{\text { Top }}{\text { Bottom }} \text { or } \\
& \frac{|a b|}{|a d|}=\frac{|a c|}{|a e|}=\frac{\text { Whole }}{\text { Top }} \text { or } \\
& \frac{|a b|}{|d b|}=\frac{|a c|}{|e c|}=\frac{\text { Whole }}{\text { Bottom }}
\end{aligned}
$$

$\frac{5}{3}=\frac{6}{x} \Rightarrow 5 x=18$ [Multiply across by $3 x$.]
$\therefore x=\frac{18}{5}=3.6$

4 (b)
Theorem 9: If the lengths of a triangle are unequal, then the degree measures of the angles opposite to them are unequal, with the greater angle opposite to the longer side.

Given: $\Delta a b c$ with $|a c|>|b c|$.

To Prove: $|\angle a b c|>|\angle c a b|$.

Construction: Mark a point d on $[a c]$ such that $|c d|=|c b|$.

Proof: $|d c|=|c b| \Rightarrow|\angle c d b|=|\angle d b c|=X$ [Isosceles triangle]
$B=|\angle a b c|=X+Y$
$X=A+Y$ [Exterior Angle]
$\Rightarrow A=X-Y$
$\therefore B>A \Rightarrow|\angle a b c|=|\angle c a b|$.
Similarly, this is true for the other sides.
4 (c) (i)
Draw a triangle $a b c$ whose sides have lengths of $|a b|=6.5 \mathrm{~cm},|a c|=6 \mathrm{~cm}$ and $|b c|=2.5 \mathrm{~cm}$.

Step 1: Draw a base using the longest side. Use a ruler to measure out a line segment [ab] of length 6.5 cm .

Step 2. Take a compass and use a ruler to measure out a length of 6 cm . Put the point of the compass at a and draw out an arc of the circle. Do the same for the third side. Using your compass again measure out a length of 2.5 cm . Put the point of the compass at b and draw out an arc of the circle so that it intersects with the other arc.

Step 3. c is the point of intersection of the two arcs. Join a to c and b to c to complete the construction.

Note: Only approximate lengths are shown in the diagrams.

4 (c) (ii)

Multiply the lengths of the lines by the scale factor of 1.8 to find the lengths of their images.
Length of image of $b c=2.5 \times 1.8=4.5 \mathrm{~cm}$
Length of image of $a c=6 \times 1.8=10.8 \mathrm{~cm}$

4 (c) (iii)

$$
k^{2}=\frac{\mid \text { Image area } \mid}{\mid \text { Object area } \mid}
$$

2
Object area (triangle $a b c$) $=7.5 \mathrm{~cm}^{2}$
Image area (big triangle) = ?
Scale factor $k=1.8$
$k^{2}=\frac{\mid \text { Image area } \mid}{\mid \text { Object area } \mid} \Rightarrow 1.8^{2}=\frac{\mid \text { Image area } \mid}{|7.5|}$
\therefore Image area $\mid=1.8^{2} \times 7.5=24.3 \mathrm{~cm}^{2}$

