Geometry (Q 4, Paper 2)

1996

4 (a) $|p r|=|q r|=|r s|$ and $|\angle p r q|=50^{\circ}$.
Find
(i) $|\angle p q r|$
(ii) $|\angle p s r|$.

(b) Prove that a line which is parallel to one side-line of a triangle, and cuts a second side, will cut the third side in the same proportion as the second.
(c) The triangle $x y z$ is the image of the triangle $a b c$ under the enlargement, centre o, with $|a b|=4$ and $|x z|=12$. The scale factor of the enlargement is 1.5.
(i) Find $|x y|$.
(ii) Find $\left|a_{c}\right|$.

(iii) If the area of triangle $a b c$ is
12.2 square units, calculate the area of triangle $x y z$.

Solution

4 (a) (i)
Isosceles triangle: This is a triangle with two equal sides. The angles opposite the equal sides are equal.

[E] Angles in a Triangle

Theorem 1: The sum of degree measure of the interior angles of a triangle is 180°.

Stated mathematically: $A+B+C=180^{\circ}$
$|\angle p q r|=|\angle q p r|=x^{\circ}$ [Isosceles triangle]
$x^{0}+x^{0}+50^{\circ}=180^{\circ}$ [Theorem 1]
$\Rightarrow 2 x^{0}=130^{\circ}$
$\therefore x^{\circ}=|\angle p q r|=65^{\circ}$

4 (a) (ii)
[A] Straight angles: L is a straight line. The angles on L add up to 180°.
$\therefore A+B+C=180^{\circ}$

$50^{\circ}+|\angle p r s|=180^{\circ}$ [Straight angle]
$\Rightarrow|\angle p r s|=180^{\circ}-50^{\circ}$
$\therefore|\angle p r s|=130^{\circ}$

$|\angle p s r|=|\angle r p s|=y^{\circ} \quad$ [Isosceles triangle]
$y^{\circ}+y^{\circ}+130^{\circ}=180^{\circ}$ [Theorem 1]
$\Rightarrow 2 y^{\circ}=50^{\circ}$
$\therefore y^{\circ}=|\angle p s r|=25^{\circ}$

4 (b)
Theorem 4: A line which is parallel to one side of a triangle, and cuts a second side, will cut the third side in the same proportion as the second.

Given: $\Delta a b c$ and line de parallel to $b c$ which cuts [$a b]$ in the ratio $m: n$.

To Prove: $\frac{|a d|}{|d b|}=\frac{|a e|}{|e c|}=\frac{m}{n}$

Construction: Divide [ab] into m and n parts each of length k so that $|a d|=m k$ and $|d b|=n k$.

Proof: According to theorem 3, [ac] is also divided into $m+n$ equal parts each of length l.

$$
\frac{|a e|}{|e c|}=\frac{m l}{n l}=\frac{m}{n}=\frac{|a d|}{|d b|} .
$$

4 (c) (i)
$k=\frac{|x y|}{|a b|} \Rightarrow 1.5=\frac{|x y|}{4} \quad$ Scale factor $k=\frac{\mid \text { Image length } \mid}{\mid \text { Object length } \mid}$
$\therefore|x y|=4 \times 1.5=6$

4 (c) (ii)
$k=\frac{|x z|}{|a c|} \Rightarrow 1.5=\frac{12}{|a c|}$
$\therefore|a c|=\frac{12}{1.5}=8$
4 (c) (iii)

$$
k^{2}=\frac{\mid \text { Image area } \mid}{\mid \text { Object area } \mid} \ldots2
$$

$k^{2}=\frac{\mid \text { Image area } \mid}{\mid \text { Object area } \mid}=\frac{\mid \text { Area of triangle } x y z \mid}{\mid \text { Area of triangle } a b c \mid}$
$\Rightarrow 1.5^{2}=\frac{\mid \text { Area of triangle } x y z \mid}{12.2}$
$\therefore \mid$ Area of triangle $x y z \mid=1.5^{2} \times 12.2=27.45$ square units

