DIFFERENTIATION & FUNCTIONS (Q 6, 7 & 8, PAPER 1)

LESSON NO. 8: TURNING POINTS

2005
6 (c) Let
$$f(x) = x^2 + px + 10$$
, $x \in \mathbb{R}$, where $p \in \mathbb{Z}$.
(i) Find $f'(x)$, the derivative of $f(x)$:
(ii) The minimum value of $f(x)$ is at $x = 3$. Find the value of p .
(iii) Find the equation of the tangent to $f(x)$ at the point (0, 10).
SOLUTION
6 (c) (i)
 $y = x^a \Rightarrow \frac{dy}{dx} = nx^{a-1}$ (1)
 $y = x^a \Rightarrow \frac{dy}{dx} = 0$
MULTIPLY BY A CONSTANT RULE: If $y = cu$, where c is a constant and u is a function of x , $\frac{dy}{dx} = c \times \frac{du}{dx}$.
 $f(x) = x^2 + px + 10 \Rightarrow 2x + p = 0$
 $f'(x) = 0 \Rightarrow 2x + p = 0$
You are told that this minimum is at $x = 3$.
 $\therefore 2(3) + p = 0 \Rightarrow 6 + p = 0 \Rightarrow p = -6$
6 (c) (iii)
Stress to FINDING THE EQUATION OF A TANGENT, T .
 $y = x$ a point (x_i, y_i) , on THE CURVE, C
Stress
1. Differentiate the equation of the curve: $\frac{dy}{dx}$.
3. Substitute x_i in for x to find the slope of the tangent: $\left(\frac{dy}{dx}\right)_{c_i}$.
3. Find the point of contact (x_i, y_i) by substituting x_i into the equation of the curve to find y_i .
3. Find the equation of the ine of the tangent using formula 4.
Equation of a time: $y - y_i = m(x - x_i)$ (1)
 (x, y) is a point on the line and m is the slope of the line.

1.
$$y = f(x) = x^2 - 6x + 10 \Rightarrow \frac{dy}{dx} = 2x - 6$$

2. $\left(\frac{dy}{dx}\right)_{x=0} = 2(0) - 6 = -6 \Rightarrow m = -6$
3. Point of contact is $(0, 10) = (x_1, y_1)$.
4. $y - y_1 = m(x - x_1)$
 $\Rightarrow y - 10 = -6(x - 0)$
 $\Rightarrow y - 10 = -6x$
 $\Rightarrow 6x + y - 10 = 0$

6 (c) Let $f(x) = x^3 - ax + 7$ for all $x \in \mathbf{R}$ and for $a \in \mathbf{R}$.

- (i) The slope of the tangent to the curve y = f(x) at x = 1 is -9. Find the value of *a*.
- (ii) Hence, find the co-ordinates of the local maximum point and the local minimum point on the curve y = f(x).

SOLUTION

6 (c) (i)

Find the slope of the curve $\frac{dy}{dx}$ at x = 1, $\left(\frac{dy}{dx}\right)_{x=1}$, and put it equal to -9.

$$y = f(x) = x^{3} - ax + 7$$

$$\therefore \frac{dy}{dx} = 3x^{2} - a$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{x=1} = 3(1)^{2} - a = -9$$

$$\Rightarrow 3 - a = -9$$

$$\therefore a = 12$$

$\mathbf{6}$ (c) (ii) Steps for finding the local maximum and local minimum of a function:

STEPS
 Differentiate the function to find dy/dx. Differentiate again to find d²y/dx².
 Set dy/dx = 0 and solve for x to find the turning points.
 Substitute the turning points into d²y/dx² to decide if they are a local maximum or a local minimum.
 Find the y coordinates of the turning points by substituting the x values back into the equation of the original function.

1.
$$y = f(x) = x^3 - 12x + 7$$

 $\frac{dy}{dx} = 3x^2 - 12$
 $\frac{d^2y}{dx^2} = 6x$
2. $\frac{dy}{dx} = 0 \Rightarrow 3x^2 - 12 = 0$
 $\Rightarrow 3(x^2 - 4) = 0$
 $\Rightarrow 3(x^2 - 4) = 0$
 $\Rightarrow 3(x + 2)(x - 2) = 0$
 $\therefore x = -2, 2$
3. $\left(\frac{d^2y}{dx^2}\right)_{x=-2} = 6(-2) = -12$
 $\left(\frac{d^2y}{dx^2}\right)_{x=-2} = 6(2) = 12$
Local Maximum: $\left(\frac{d^2y}{dx^2}\right)_{TP} < 0$
Local Minimum: $\left(\frac{d^2y}{dx^2}\right)_{TP} > 0$
4. $x = -2$: $y = f(-2) = (-2)^3 - 12(-2) + 7 = -8 + 24 + 7 = 23 \Rightarrow (-2, 23)$ is a local maximum.
 $x = 2$: $y = f(2) = (2)^3 - 12(2) + 7 = 8 - 24 + 7 = 23 \Rightarrow (2, -9)$ is a local minimum.

8 (c) Let $f(x) = x^3 - 3x^2 + ax + 1$ for all $x \in \mathbf{R}$ and for $a \in \mathbf{R}$.

f(x) has a turning point (a local maximum or a local minimum) at x = -1.

- (i) Find the value of *a*.
- (ii) Is this turning point a local maximum or a local minimum? Give a reason for your answer.
- (iii) Find the co-ordinates of the other turning point of f(x).

SOLUTION

8 (c) (i)

Turning Point
$$\Rightarrow \frac{dy}{dx} = 0$$
6

To find the turning points set $\frac{dy}{dx} = 0$ and solve for *x*.

You are told there is a turning point at x = -1. Therefore, you need to find $\frac{dy}{dx}$ at x = -1 and set the answer equal to zero as it is a turning point.

$$y = f(x) = x^{3} - 3x^{2} + ax + 1$$

$$\therefore \frac{dy}{dx} = 3x^{2} - 6x + a$$

$$\therefore \left(\frac{dy}{dx}\right)_{x=-1} = 3(-1)^{2} - 6(-1) + a = 0$$

$$\Rightarrow 3 + 6 + a = 0$$

$$\therefore a = -9$$

Солт....

Therefore, (3, -26) is the other turning point.

- 6 (c) $f(x) = (x+k)(x-2)^2$, where k is a real number.
 - (i) If f(3) = 7, find the value of k.
 - (ii) Using this value for k, find the coordinates of the local maximum and of the local minimum of f(x).

Solution 6(c)(i)

$$f(x) = (x+k)(x-2)^{2}$$

$$f(3) = 7 \Rightarrow (3+k)(3-2)^{2} = 7$$

$$\Rightarrow (3+k)(1)^{2} = 7$$

$$\Rightarrow 3+k = 7$$

$$\therefore k = 4$$

6 (c) (ii)

 $f(x) = (x+4)(x-2)^{2}$ [Multiply this out and tidy up.] $\Rightarrow f(x) = (x+4)(x^{2}-4x+4)$ $\Rightarrow f(x) = x^{3}-4x^{2}+4x+4x^{2}-16x+16$

$$\therefore f(x) = x^3 - 12x + 16$$

STEPS FOR FINDING THE LOCAL MAXIMUM AND LOCAL MINIMUM OF A FUNCTION:

Steps	
1 . Differentiate the function to find $\frac{dy}{dx}$. Differentiate again to find $\frac{d^2y}{dx^2}$.	
2. Set $\frac{dy}{dx} = 0$ and solve for x to find the turning points.	
3. Substitute the turning points into $\frac{d^2y}{dx^2}$ to decide if they are a local	
maximum or a local minimum.	
4. Find the <i>y</i> coordinates of the turning points by substituting the <i>x</i> values back into the equation of the original function.	
	Cont

1.
$$y = f(x) = x^3 - 12x + 16$$

 $\frac{dy}{dx} = f'(x) = 3x^2 - 12$
 $\frac{d^2y}{dx^2} = f''(x) = 6x$
2. $\frac{dy}{dx} = 0 \Rightarrow 3x^2 - 12 = 0$
 $\Rightarrow 3(x^2 - 4) = 0$ $a^2 - b^2 = (a + b)(a - b)$ 1
 $\Rightarrow 3(x + 2)(x - 2) = 0$
 $\therefore x = -2, 2$
3. $\left(\frac{d^2y}{dx^2}\right)_{x=-2} = 6(-2) = -12 < 0$ Local Maximum: $\left(\frac{d^2y}{dx^2}\right)_{TP} < 0$
 $\left(\frac{d^2y}{dx^2}\right)_{x=-2} = 6(2) = 12 > 0$ Local Minimum: $\left(\frac{d^2y}{dx^2}\right)_{TP} > 0$
4. $x = -2$: $y = f(-2) = (-2)^3 - 12(-2) + 16 = -8 + 24 + 16 = 32 \Rightarrow (-2, 32)$ is a local maximum.
 $x = 2$: $y = f(2) = (2)^3 - 12(2) + 16 = 8 - 24 + 16 = 0 \Rightarrow (2, 0)$ is a local minimum.

6 (c) Let f(x) = ax³ + bx + c, for all x ∈ R and for a, b, c ∈ R. Use the information which follows to find the value of a, of b and of c:
(i) f(0) = 3
(ii) the slope of the tangent to the curve of f(x) at x = 1 is -18

(iii) the curve of f(x) has a local maximum at x = 2.

SOLUTION

6 (c) (i)

$$f(x) = ax^3 + bx + c$$

 $f(0) = 3 \Rightarrow a(0)^3 + b(0) + c = 3$

$$\therefore c = 3$$

6 (c) (ii)

To find the slope of the tangent to the curve at x = 1, find $\left(\frac{dy}{dx}\right)_{x=1}$ and put it equal to -18.

$$y = f(x) - dx + bx + 3$$

$$\therefore \frac{dy}{dx} = 3ax^{2} + b$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{x=1} = 3a(1)^{2} + b = -18$$

$$\therefore 3a + b = -18.....(1)$$

Сонт....

6 (c) (iii)

To find the local maximum you put $\frac{dy}{dx} = 0$ and solve for *x*. You are told that you get an answer of x = 2 when you do this.

$$\frac{dy}{dx} = 0 \Rightarrow 3ax^{2} + b = 0$$

$$\Rightarrow 3a(2)^{2} + b = 0$$

$$\Rightarrow 12a + b = 0....(2)$$

You need to solve equations (1) and (2) to find *a* and *b*.

$$3a + b = -18..(1)(\times -1)$$

$$12a + b = 0.....(2)$$

$$-3a - b = 18$$

$$\frac{12a + b = 0}{9a} = 18 \Rightarrow a = 2$$

Substitute *a* = 2 into Equation (2).

$$\therefore 12(2) + b = 0 \Rightarrow 24 + b = 0$$

$$\therefore b = -24$$

Ans: a = 2, b = -24, c = 3