DIFFERENTIATION & FUNCTIONS (Q 6, 7 & 8, PAPER 1)

Lesson No. 6: Differentiation 4: Chain Rule

2006

7 (b) (ii) Given that $y = (5 - x^2)^3$, find $\frac{dy}{dx}$ when x = 2.

SOLUTION

$$y = (u)^n \Rightarrow \frac{dy}{dx} = n(u)^{n-1} \times \frac{du}{dx}$$
 ...

REMEMBER IT AS:

Push the power down in front of the bracket and subtract one from the power. Multiply by the differentiation of the inside of the bracket.

$$u = (5 - x^2) \Rightarrow \frac{du}{dx} = 0 - 2x = -2x$$

$$y = (5 - x^{2})^{3} \Rightarrow \frac{dy}{dx} = 3(5 - x^{2})^{2} \times (-2x)$$

$$\Rightarrow \frac{dy}{dx} = -6x(5 - x^{2})^{2} \quad [\text{Replace } x \text{ by 2.}]$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{x=2} = -6(2)(5 - (2)^{2})^{2}$$

$$= -12(5 - 4)^{2} = -12(1)^{2} = -12(1) = -12$$

2004

7 (b) (ii) Given that $y = (x^2 - 2x - 3)^3$, show that $\frac{dy}{dx} = 0$ when x = 1.

SOLUTION

$$y = (x^2 - 2x - 3)^3$$

$$y = (u)^n \Rightarrow \frac{dy}{dx} = n(u)^{n-1} \times \frac{du}{dx} \dots$$

REMEMBER IT AS:

$$u = (x^2 - 2x - 3) \Rightarrow \frac{du}{dx} = 2x - 2$$

$$y = (x^2 - 2x - 3)^3$$

$$\Rightarrow \frac{dy}{dx} = 3(x^2 - 2x - 3)^2 (2x - 2)$$

$$\Rightarrow \frac{dy}{dx} = (6x - 6)(x^2 - 2x - 3)^2$$

7 (b) (i) Differentiate $(3x^3 - 2x^2 + 2)^4$ with respect to x.

SOLUTION

$$y = (u)^n \Rightarrow \frac{dy}{dx} = n(u)^{n-1} \times \frac{du}{dx} \dots$$

REMEMBER IT AS:

Push the power down in front of the bracket and subtract one from the power. Multiply by the differentiation of the inside of the bracket.

$$u = (3x^3 - 2x^2 + 2) \Longrightarrow \frac{du}{dx} = 9x^2 - 4x$$

$$y = (3x^3 - 2x^2 + 2)^4 \Rightarrow \frac{dy}{dx} = 4(3x^3 - 2x^2 + 2)^3(9x^2 - 4x) = (36x^2 - 16x)(3x^3 - 2x^2 + 2)^3$$

2002

6 (b) (i) Find $\frac{dy}{dx}$ where $y = (x-1)^7$ and evaluate your answer at x = 2.

SOLUTION

$$y = (u)^n \Rightarrow \frac{dy}{dx} = n(u)^{n-1} \times \frac{du}{dx} \dots$$

REMEMBER IT AS:

Push the power down in front of the bracket and subtract one from the power. Multiply by the differentiation of the inside of the bracket.

$$y = (x-1)^7$$

$$\Rightarrow \frac{dy}{dx} = 7(x-1)^6 (1) = 7(x-1)^6$$

$$u = (x-1) \Rightarrow \frac{du}{dx} = 1$$

$$u = (x-1) \Rightarrow \frac{du}{dx} = 1$$

2001

7 (b) (ii) Find the value of $\frac{dy}{dx}$ at x = 0 when $y = (x^2 - 7x + 1)^5$.

SOLUTION

$$u = x^2 - 7x + 1 \Rightarrow \frac{du}{dx} = 2x - 7$$

$$y = (x^2 - 7x + 1)^5 \Rightarrow \frac{dy}{dx} = 5(x^2 - 7x + 1)^4 (2x - 7)$$

$$\Rightarrow \frac{dy}{dx} = (10x - 35)(x^2 - 7x + 1)^4$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{x=0} = (10(0) - 35)((0)^2 - 7(0) + 1)^4 = (-35)(1)^4 = -35$$

7 (b) (ii) Find $\frac{dy}{dx}$ when $y = (x^2 + 5x - 1)^3$.

SOLUTION

$$y = (u)^n \Rightarrow \frac{dy}{dx} = n(u)^{n-1} \times \frac{du}{dx} \dots$$

REMEMBER IT AS:

Push the power down in front of the bracket and subtract one from the power. Multiply by the differentiation of the inside of the bracket.

$$u = (x^2 + 5x - 1) \Rightarrow \frac{du}{dx} = 2x + 5$$

$$y = (x^{2} + 5x - 1)^{3}$$

$$\Rightarrow \frac{dy}{dx} = 3(x^{2} + 5x - 1)^{2}(2x + 5)$$

$$\Rightarrow \frac{dy}{dx} = (6x + 15)(x^{2} + 5x - 1)^{2}$$

1999

7 (b) (i) Find $\frac{dy}{dx}$ when $y = (3-7x)^5$.

SOLUTION

$$y = (u)^n \Rightarrow \frac{dy}{dx} = n(u)^{n-1} \times \frac{du}{dx}$$
 ...

REMEMBER IT AS:

$$u = 3 - 7x \Rightarrow \frac{du}{dx} = -7$$

$$y = (3-7x)^5 \Rightarrow \frac{dy}{dx} = 5(3-7x)^4(-7) = -35(3-7x)^4$$

7 (b) (ii) Find $\frac{dy}{dx}$ when $y = (4-3x^2)^7$ and write down the range of values of x for

which
$$\frac{dy}{dx} > 0$$
.

SOLUTION

$$y = (u)^n \Rightarrow \frac{dy}{dx} = n(u)^{n-1} \times \frac{du}{dx} \dots$$

REMEMBER IT AS:

Push the power down in front of the bracket and subtract one from the power. Multiply by the differentiation of the inside of the bracket.

$$u = (4 - 3x^2) \Rightarrow \frac{du}{dx} = -6x$$

$$y = (4-3x^2)^7 \Rightarrow \frac{dy}{dx} = 7(4-3x^2)^6(-6x) = -42x(4-3x^2)^6$$

$$\frac{dy}{dx} > 0 \Rightarrow -42x(4-3x^2)^6 > 0$$

What values of x make this statement true?

 $(4-3x^2)^6 > 0$ is true for all values of x. No matter what value is inside the bracket, once you raise it to an even power the value will be positive.

This means that x must be negative so that the -42x is also positive. Therefore, x < 0.

1997

7 (b) (ii) Find the value of $\frac{dy}{dx}$ at x = -1 when $y = (3x+1)^4$.

SOLUTION

$$y = (u)^n \Rightarrow \frac{dy}{dx} = n(u)^{n-1} \times \frac{du}{dx} \dots$$

REMEMBER IT AS:

$$u = 3x + 1 \Rightarrow \frac{du}{dx} = 3$$

$$y = (3x+1)^4 \Rightarrow \frac{dy}{dx} = 4(3x+1)^3(3) = 12(3x+1)^3$$

$$\left(\frac{dy}{dx}\right)_{x=-1} = 12(3(-1)+1)^3 = 12(-3+1)^3$$

$$=12(-2)^3=12(-8)=-96$$

7 (b) (ii) Differentiate $\left(x^5 - \frac{1}{x^2}\right)^7$ with respect to $x, x \neq 0$.

SOLUTION

$$y = (u)^n \Rightarrow \frac{dy}{dx} = n(u)^{n-1} \times \frac{du}{dx} \dots$$

REMEMBER IT AS:

$$u = x^5 - \frac{1}{x^2} = x^5 - x^{-2} \Rightarrow \frac{du}{dx} = 5x^4 + 2x^{-3} = 5x^4 + \frac{2}{x^3}$$

$$y = \left(x^{5} - \frac{1}{x^{2}}\right)^{7} \Rightarrow \frac{dy}{dx} = 7\left(x^{5} - \frac{1}{x^{2}}\right)^{6} \left(5x^{4} + \frac{2}{x^{3}}\right)$$
$$\therefore \frac{dy}{dx} = \left(35x^{4} + \frac{14}{x^{3}}\right)\left(x^{5} - \frac{1}{x^{2}}\right)^{6}$$