Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

Lesson No. 15: Intersecting Graphs

2005

8 Let $f(x)=\frac{1}{x-1}, x \in \mathbf{R}, x \neq 1$.
(i) Find $f(-3), f(-1.5), f(0.5), f(1.5), f(5)$.
(ii) Draw the graph of the function f from $x=-3$ to $x=5$.
(iii) On the same diagram, draw the graph of the function

$$
g(x)=x+1
$$

in the domain $-2 \leq x \leq 2, x \in \mathbf{R}$.
(iv) Use your graphs to estimate the values of x for which $f(x)=g(x)$.
(v) Find, using algebra, the values of x for which $f(x)=g(x)$.

Solution

8 (i)
$f(x)=\frac{1}{x-1}$
$f(-3)=\frac{1}{(-3)-1}=-\frac{1}{4}=-0.25$
$f(-1.5)=\frac{1}{(-1.5)-1}=-\frac{1}{2.5}=-0.4$
$f(0.5)=\frac{1}{(0.5)-1}=-\frac{1}{0.5}=-2$
$f(1.5)=\frac{1}{(1.5)-1}=\frac{1}{0.5}=2$
$f(5)=\frac{1}{(5)-1}=\frac{1}{4}=0.25$
8 (ii)

Steps

1. Find the gap first by putting the bottom of the function equal to zero and solving for x.
2. Find other values of $f(x)$ by putting in values of x as given in the domain.
3. Plot these points by joining up smoothly and continuing towards the vertical line but never touching it.
4. Put $x-1=0 \Rightarrow x=1$ is the asymptote.
5. You generated points in part (i) which you can use to draw the graph.

Points: $(-3,-0.25),(-1.5,-0.4),(-2,0.5),(1.5,2),(5,0.25)$
3. Draw the graph.

8 (iii)

$g(x)=x+1$ is a straight line graph so you just need 2 points to draw the graph. Use the end values of the domain.
$x=-2: g(x)=x+1 \Rightarrow g(-2)=(-2)+1=-1 \Rightarrow(-2,-1)$ is a point.
$x=2: g(x)=x+1 \Rightarrow g(2)=(2)+1=3 \Rightarrow(2,3)$ is a point.
Plot these two points using the same axes and draw a straight line through them.

8 (iv)

Find out where the two graphs intersect and read off the x values.
You can see that $x=1.4$ and $x=-1.4$.

8 (v)

$f(x)=g(x) \Rightarrow \frac{1}{x-1}=x+1 \quad$ [Multiply across by $(x-1)$.]
$\Rightarrow 1=(x+1)(x-1) \quad$ [Multiply out the brackets.]
$\Rightarrow 1=x^{2}-1$
$\Rightarrow 2=x^{2}$
$\Rightarrow x= \pm \sqrt{2}$

2000

8 (b) (i) Draw the graph of

$$
g(x)=\frac{1}{x} \text { for }-3 \leq x \leq 3, x \in \mathbf{R} \text { and } x \neq 0 .
$$

(ii) Using the same axes and the same scales, draw the graph of

$$
h(x)=x+1 \text { for }-3 \leq x \leq 3, x \in \mathbf{R} .
$$

(iii) Use your graphs to estimate the values of x for which

$$
\frac{1}{x}=x+1 .
$$

Cont....

Solution
8 (b) (i)

DRawing reciprocal graphs

Steps

1. Find the gap first by putting the bottom of the function equal to zero and solving for x.
2. Find other values of $f(x)$ by putting in values of x as given in the domain.
3. Plot these points by joining up smoothly and continuing towards the vertical line but never touching it.
4. Put $x=0$. The line $x=0$ (i.e. the y-axis) represents the gap or asymptote.
5. $x=-3: f(-3)=\frac{1}{-3}=-\frac{1}{3}=-0.33 \Rightarrow(-3,-0.33)$
$x=-2: f(-2)=\frac{1}{-2}=-\frac{1}{2}=-0.5 \Rightarrow(-2,-0.5)$
$x=-1: f(-1)=\frac{1}{-1}=-1 \Rightarrow(-1,-1)$
$x=0$: This is the gap where the function is not defined.

$$
\begin{aligned}
& x=1: f(1)=\frac{1}{1}=1 \Rightarrow(1,1) \\
& x=2: f(2)=\frac{1}{2}=0.5 \Rightarrow(2,0.5) \\
& x=3: f(3)=\frac{1}{3}=0.33 \Rightarrow(3,0.33)
\end{aligned}
$$

3. Plot the reciprocal graph.

8 (b) (ii)
As these graphs are straight lines, you only need to plot the first and last points in the domain.
$h(x)=x+1$
$\Rightarrow h(-3)=-3+1=-2 \Rightarrow(-3,-2)$ is a point on the straight line.
$\Rightarrow h(3)=3+1=4 \Rightarrow(3,4)$ is a point on the straight line.

8 (b) (iii)

Read off the x values of where the graphs intersect.
$\therefore x=-1.6,0.6$

1999

8 Let $f(x)=2 x^{3}-5 x^{2}-4 x+3$ for $x \in \mathbf{R}$.
(i) Complete the table

x	-1.5	-1	0	1	2	3	3.5
$f(x)$	-9						13.5

(ii) Find the derivative of $f(x)$.

Calculate the co-ordinates of the local minimum and show that the co-ordinates of the local maximum are $\left(-\frac{1}{3}, \frac{100}{27}\right)$.
(iii) Draw the graph of

$$
f(x)=2 x^{3}-5 x^{2}-4 x+3
$$

for $-1.5 \leq x \leq 3.5$.
(iv) Write the equation $2 x^{3}-5 x^{2}-6 x+6=0$ in the form

$$
2 x^{3}-5 x^{2}-4 x+3=a x+b, \quad a, b \in \mathbf{Z}
$$

Hence, use your graph to estimate the solutions of the equation

$$
2 x^{3}-5 x^{2}-6 x+6=0 .
$$

Solution

8 (i)

$f(x)=2 x^{3}-5 x^{2}-4 x+3$
$\Rightarrow f(-1.5)=2(-1.5)^{3}-5(-1.5)^{2}-4(-1.5)+3=-9$ [Use your calculator.]
Find the other values of x in the same way.

x	-1.5	-1	0	1	2	3	3.5
$f(x)$	-9	0	3	-4	-9	0	13.5

8 (ii) Steps for finding the local maximum and local minimum of a function:

Steps

1. Differentiate the function to find $\frac{d y}{d x}$. Differentiate again to find $\frac{d^{2} y}{d x^{2}}$.
2. Set $\frac{d y}{d x}=0$ and solve for x to find the turning points.
3. Substitute the turning points into $\frac{d^{2} y}{d x^{2}}$ to decide if they are a local maximum or a local minimum.
4. Find the y coordinates of the turning points by substituting the x values back into the equation of the original function.
5. $y=f(x)=2 x^{3}-5 x^{2}-4 x+3$

$$
\begin{aligned}
& \frac{d y}{d x}=f^{\prime}(x)=6 x^{2}-10 x-4 \\
& \frac{d^{2} y}{d x^{2}}=f^{\prime \prime}(x)=12 x-10
\end{aligned}
$$

2. $\frac{d y}{d x}=0 \Rightarrow 6 x^{2}-10 x-4=0$
$\Rightarrow 3 x^{2}-5 x-2=0$
$\Rightarrow(3 x+1)(x-2)=0$
$\therefore x=-\frac{1}{3}, 2$
3. $\left(\frac{d^{2} y}{d x^{2}}\right)_{x=-\frac{1}{3}}=12\left(-\frac{1}{3}\right)-10=-4-10=-14<0$
$\left(\frac{d^{2} y}{d x^{2}}\right)_{x=2}=12(2)-10=24-10=14>0$
Local Maximum: $\left(\frac{d^{2} y}{d x^{2}}\right)_{T P}<0$
Local Minimum: $\left(\frac{d^{2} y}{d x^{2}}\right)_{\mathrm{TP}}>0$
4. $x=-\frac{1}{3}: y=2\left(-\frac{1}{3}\right)^{3}-5\left(-\frac{1}{3}\right)^{2}-4\left(-\frac{1}{3}\right)+3=\frac{100}{27} \Rightarrow\left(-\frac{1}{3}, \frac{100}{27}\right)$ is a local maximum.
$x=2: y=2(2)^{3}-5(2)^{2}-4(2)+3=-9 \Rightarrow(2,-9)$ is a local minimum.

8 (iii)

Draw the cubic graph using the information from the previous parts.
Points: $(-1.5,-9),(-1,0),(0,3),(1,-4)$

$$
(2,-9),(3,0),(3.5,13.5)
$$

Local maximum: $\left(-\frac{1}{3}, \frac{100}{27}\right)=(-0.33,3.7)$
Local minimum: $(2,-9)$
8 (iv)
$2 x^{3}-5 x^{2}-6 x+6=0$
$\Rightarrow 2 x^{3}-5 x^{2}-4 x+3=2 x-3$
Let $h(x)=2 x-3$
$\therefore f(x)=h(x)$.
$h(x)$ is a straight line. You want to find where the straight line and the cubic graph intersect.
Graph $h(x)$ by using the first and last points of the domain.
$h(-1.5)=2(-1.5)-3=-3-3=-6$
$\Rightarrow(-1.5,-6)$ is a point on the graph.
$h(3.5)=2(3.5)-3=7-3=4$
$\Rightarrow(3.5,4)$ is a point on the graph.
You can see the x values of the places where the graphs intersect:
$\therefore x=-1.4,0.7,3.2$

1997

8 (c) Draw a graph of

$$
g(x)=\frac{1}{x+2}
$$

for $0 \leq x \leq 4, x \in \mathbf{R}$.
Using the same axes and the same scales draw the graph of

$$
h(x)=x-2
$$

Show how your graphs may be used to estimate the value of $\sqrt{5}$.

Solution

Drawing reciprocal graphs

Steps

1. Find the gap first by putting the bottom of the function equal to zero and solving for x.
2. Find other values of $f(x)$ by putting in values of x as given in the domain.
3. Plot these points by joining up smoothly and continuing towards the vertical line but never touching it.
4. Put $x+2=0 \Rightarrow x=-2$. This line represents the gap or asymptote.
5. $g(x)=\frac{1}{x+2}$
$g(0)=\frac{1}{0+2}=\frac{1}{2} \Rightarrow\left(0, \frac{1}{2}\right)$ is a point on the graph.
$g(1)=\frac{1}{1+2}=\frac{1}{3} \Rightarrow\left(0, \frac{1}{3}\right)$ is a point on the graph.
$g(2)=\frac{1}{2+2}=\frac{1}{4} \Rightarrow\left(0, \frac{1}{4}\right)$ is a point on the graph.
$g(3)=\frac{1}{3+2}=\frac{1}{5} \Rightarrow\left(0, \frac{1}{5}\right)$ is a point on the graph.
$g(4)=\frac{1}{4+2}=\frac{1}{6} \Rightarrow\left(0, \frac{1}{6}\right)$ is a point on the graph.
6. Plot the graph.

				a	$g(x)$				

The graph of $h(x)=x-2$ is a straight line graph. You just need to get 2 points on it to graph it. Choose the end points of the domain.
$x=0: h(0)=(0)-2=-2 \Rightarrow(0,-2)$ is a point on the graph.
$x=4: h(4)=(4)-2=2 \Rightarrow(4,2)$ is a point on the graph.

Steps

1. Draw each graph on the same diagram using the same scales.
2. Mark the points of intersection and read off their x value.
3. Solve $f(x)=g(x)$ exactly by algebra.
4. Hence, estimate the solution.
5. Graphs drawn as above.
6. $x=2.2$ is their point of intersection.
7. $g(x)=h(x) \Rightarrow \frac{1}{x+2}=x-2$
$\Rightarrow 1=(x-2)(x+2) \Rightarrow 1=x^{2}-4 \Rightarrow x^{2}=5$
$\therefore x=\sqrt{5}$
8. $\therefore \sqrt{5} \approx 2.2$
