DIFFERENTIATION & FUNCTIONS (Q 6, 7 & 8, PAPER 1)

LESSON NO. 15: INTERSECTING GRAPHS

2005

8 Let
$$f(x) = \frac{1}{x-1}, x \in \mathbf{R}, x \neq 1$$
.
(i) Find $f(-3), f(-1.5), f(0.5), f(1.5), f(5)$.
(ii) Draw the graph of the function f from $x = -3$ to $x = 5$.
(iii) On the same diagram, draw the graph of the function $g(x) = x + 1$
in the domain $-2 \le x \le 2, x \in \mathbf{R}$.
(iv) Use your graphs to estimate the values of x for which $f(x) = g(x)$.
(v) Find, using algebra, the values of x for which $f(x) = g(x)$.
Solution
8 (i)
 $f(x) = \frac{1}{x-1}$
 $f(-3) = \frac{1}{(-3)-1} = -\frac{1}{4} = -0.25$
 $f(-1.5) = \frac{1}{(-1.5)-1} = -\frac{1}{2.5} = -0.4$
 $f(0.5) = \frac{1}{(0.5)-1} = -\frac{1}{0.5} = -2$
 $f(1.5) = \frac{1}{(1.5)-1} = \frac{1}{0.5} = 2$
 $f(5) = \frac{1}{(5)-1} = \frac{1}{4} = 0.25$
8 (ii)
Steps
1. Find the gap first by putting the bottom of the function equal to zero and solving for x .

- 2. Find other values of f(x) by putting in values of x as given in the domain.
- **3**. Plot these points by joining up smoothly and continuing towards the vertical line but never touching it.
- **1**. Put $x 1 = 0 \Rightarrow x = 1$ is the asymptote.
- **2**. You generated points in part (i) which you can use to draw the graph. Points: (-3, -0.25), (-1.5, -0.4), (-2, 0.5), (1.5, 2), (5, 0.25)
- 3. Draw the graph.

8 (iii)

g(x) = x + 1 is a straight line graph so you just need 2 points to draw the graph. Use the end values of the domain.

x = -2: $g(x) = x + 1 \Rightarrow g(-2) = (-2) + 1 = -1 \Rightarrow (-2, -1)$ is a point.

x = 2: $g(x) = x + 1 \Longrightarrow g(2) = (2) + 1 = 3 \Longrightarrow (2, 3)$ is a point.

Plot these two points using the same axes and draw a straight line through them.

8 (iv)

Find out where the two graphs intersect and read off the *x* values.

You can see that x = 1.4 and x = -1.4.

8 (v)

 $f(x) = g(x) \Rightarrow \frac{1}{x-1} = x+1$ [Multiply across by (x-1).] $\Rightarrow 1 = (x+1)(x-1)$ [Multiply out the brackets.] $\Rightarrow 1 = x^2 - 1$ $\Rightarrow 2 = x^2$ $\Rightarrow x = \pm \sqrt{2}$

2000

8 (b) (i) Draw the graph of $g(x) = \frac{1}{x}$ for $-3 \le x \le 3$, $x \in \mathbf{R}$ and $x \ne 0$.

(ii) Using the same axes and the same scales, draw the graph of

$$h(x) = x + 1$$
 for $-3 \le x \le 3$, $x \in \mathbf{R}$.

(iii) Use your graphs to estimate the values of *x* for which

$$\frac{1}{x} = x + 1.$$

Солт....

1999

- 8 Let $f(x) = 2x^3 5x^2 4x + 3$ for $x \in \mathbf{R}$.
 - (i) Complete the table

x	-1.5	-1	0	1	2	3	3.5
f(x)	-9						13.5

(ii) Find the derivative of f(x). Calculate the co-ordinates of the local minimum and show that the co-ordinates of the local maximum are $\left(-\frac{1}{3}, \frac{100}{27}\right)$.

(iii) Draw the graph of

$$f(x) = 2x^3 - 5x^2 - 4x + 3$$

for $-1.5 \le x \le 3.5$.

(iv) Write the equation $2x^3 - 5x^2 - 6x + 6 = 0$ in the form

2.

$$x^3 - 5x^2 - 4x + 3 = ax + b, a, b \in \mathbb{Z}.$$

Hence, use your graph to estimate the solutions of the equation

$$2x^3 - 5x^2 - 6x + 6 = 0.$$

SOLUTION

8 (i)

 $f(x) = 2x^3 - 5x^2 - 4x + 3$ $\Rightarrow f(-1.5) = 2(-1.5)^3 - 5(-1.5)^2 - 4(-1.5) + 3 = -9$ [Use your calculator.]

Find the other values of *x* in the same way.

x	-1.5	-1	0	1	2	3	3.5
f(x)	-9	0	3	-4	-9	0	13.5

8 (ii) Steps for finding the local maximum and local minimum of a function:

Steps

- **1**. Differentiate the function to find $\frac{dy}{dx}$. Differentiate again to find $\frac{d^2y}{dx^2}$.
- 2. Set $\frac{dy}{dx} = 0$ and solve for *x* to find the turning points.
- 3. Substitute the turning points into $\frac{d^2y}{dx^2}$ to decide if they are a local

maximum or a local minimum.

4. Find the *y* coordinates of the turning points by substituting the *x* values back into the equation of the original function.

Сомт....

1.
$$y = f(x) = 2x^3 - 5x^2 - 4x + 3$$

 $\frac{dy}{dx} = f'(x) = 6x^2 - 10x - 4$
 $\frac{d^2y}{dx^2} = f''(x) = 12x - 10$
2. $\frac{dy}{dx} = 0 \Rightarrow 6x^2 - 10x - 4 = 0$
 $\Rightarrow 3x^2 - 5x - 2 = 0$
 $\Rightarrow (3x + 1)(x - 2) = 0$
 $\therefore x = -\frac{1}{3}, 2$
3. $\left(\frac{d^2y}{dx^2}\right)_{x=-\frac{1}{3}} = 12(-\frac{1}{3}) - 10 = -4 - 10 = -14 < 0$
 $\left(\frac{d^2y}{dx^2}\right)_{x=-\frac{1}{3}} = 12(2) - 10 = 24 - 10 = 14 > 0$
4. $x = -\frac{1}{3}: y = 2(-\frac{1}{3})^3 - 5(-\frac{1}{3})^2 - 4(-\frac{1}{3}) + 3 = \frac{100}{27} \Rightarrow (-\frac{1}{3}, \frac{100}{27})$ is a local maximum.
 $x = 2: y = 2(2)^3 - 5(2)^2 - 4(2) + 3 = -9 \Rightarrow (2, -9)$ is a local minimum.
($\frac{d^2y}{dx^2} = 12(2) - 10 = 24 - 10 = 14 > 0$

8 (iii)

Draw the cubic graph using the information from the previous parts.

Points: (-1.5, -9), (-1, 0), (0, 3), (1, -4) (2, -9), (3, 0), (3.5, 13.5)

Local maximum: $\left(-\frac{1}{3}, \frac{100}{27}\right) = (-0.33, 3.7)$

Local minimum: (2, -9)

8 (iv)

 $2x^{3} - 5x^{2} - 6x + 6 = 0$ $\Rightarrow 2x^{3} - 5x^{2} - 4x + 3 = 2x - 3$

Let h(x) = 2x - 3

$$\therefore f(x) = h(x).$$

h(x) is a straight line. You want to find where the straight line and the cubic graph intersect. Graph h(x) by using the first and last points of the domain.

h(-1.5) = 2(-1.5) - 3 = -3 - 3 = -6

 \Rightarrow (-1.5, -6) is a point on the graph.

h(3.5) = 2(3.5) - 3 = 7 - 3 = 4

 \Rightarrow (3.5, 4) is a point on the graph.

You can see the *x* values of the places where the graphs intersect:

 $\therefore x = -1.4, 0.7, 3.2$

1997

8 (c) Draw a graph of

$$g(x) = \frac{1}{x+2}$$

for $0 \le x \le 4$, $x \in \mathbf{R}$.

Using the same axes and the same scales draw the graph of

h(x) = x - 2.

Show how your graphs may be used to estimate the value of $\sqrt{5}$.

SOLUTION

DRAWING RECIPROCAL GRAPHS

Steps

- 1. Find the gap first by putting the bottom of the function equal to zero and solving for *x*.
- 2. Find other values of f(x) by putting in values of x as given in the domain.
- **3**. Plot these points by joining up smoothly and continuing towards the vertical line but never touching it.

1. Put $x + 2 = 0 \Rightarrow x = -2$. This line represents the gap or asymptote.

2.
$$g(x) = \frac{1}{x+2}$$

 $g(0) = \frac{1}{0+2} = \frac{1}{2} \Longrightarrow (0, \frac{1}{2})$ is a point on the graph.

 $g(1) = \frac{1}{1+2} = \frac{1}{3} \Longrightarrow (0, \frac{1}{3})$ is a point on the graph.

$$g(2) = \frac{1}{2+2} = \frac{1}{4} \Longrightarrow (0, \frac{1}{4})$$
 is a point on the graph.

$$g(3) = \frac{1}{3+2} = \frac{1}{5} \Longrightarrow (0, \frac{1}{5}) \text{ is a point on the graph.}$$

$$g(4) = \frac{1}{4+2} = \frac{1}{6} \Longrightarrow (0, \frac{1}{6})$$
 is a point on the graph.

3. Plot the graph.

Сомт....

The graph of h(x) = x - 2 is a straight line graph. You just need to get 2 points on it to graph it. Choose the end points of the domain.

 $x = 0: h(0) = (0) - 2 = -2 \implies (0, -2)$ is a point on the graph.

x = 4: $h(4) = (4) - 2 = 2 \Longrightarrow (4, 2)$ is a point on the graph.

4. $\therefore \sqrt{5} \approx 2.2$