Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

Lesson No. 12: Quadratic Graphs

2006

6 (c) Let $f(x)=3+8 x-2 x^{2}, x \in \mathbf{R}$.
(i) Find the co-ordinates of the point at which the curve $y=f(x)$ cuts the y-axis.
(ii) Find the value of x for which $f(x)$ is a maximum.
(iii) For what range of values of x is $f^{\prime}(x)>4$?

Solution

6 (c) (i)

$f(x)=3+8 x-2 x^{2}$

```
Graph cuts }y\mathrm{ axis: Put }x=0\mathrm{ .
```

$\Rightarrow f(x)=3+8(0)-2(0)^{2}=3$
The graph cuts the y-axis at $(0,3)$.

6 (c) (ii)

$f(x)=3+8 x-2 x^{2}$
$\Rightarrow f^{\prime}(x)=0+8-2 \times 2 x$
$\Rightarrow f^{\prime}(x)=8-4 x$
To find the value of x of the turning point which you are told is a maximum, put $f^{\prime}(x)=0$.
$f^{\prime}(x)=0 \Rightarrow 8-4 x=0$
Turning Point $\Rightarrow \frac{d y}{d x}=0$
$\Rightarrow 2-x=0$
$\Rightarrow x=2$

6 (c) (iii)

$f^{\prime}(x)>0 \Rightarrow 8-4 x>4$
$\Rightarrow 2-x>1$
$\Rightarrow-x>-1$ [Multiply across by a negative number. Remember to reverse the inequality.]
$\Rightarrow x<1$

2003

6 (c) Let $f(x)=3-5 x-2 x^{2}, x \in \mathbf{R}$.
(i) Find $f^{\prime}(x)$, the derivative of $f(x)$, and hence find the co-ordinates of the local maximum point of the curve $y=f(x)$.
(ii) Solve the equation $f(x)=0$.
(iii) Use your answers from parts (i) and (ii) to sketch the graph of $f: x \rightarrow 3-5 x-2 x^{2}$, showing scaled and labelled axes.

Solution

6 (c) (i)

Steps for finding the local maximum and local minimum of a function:
Steps

1. Differentiate the function to find $\frac{d y}{d x}$. Differentiate again to find $\frac{d^{2} y}{d x^{2}}$.
2. Set $\frac{d y}{d x}=0$ and solve for x to find the turning points.
3. Substitute the turning points into $\frac{d^{2} y}{d x^{2}}$ to decide if they are a local maximum or a local minimum.
4. Find the y coordinates of the turning points by substituting the x values back into the equation of the original function.
5. $y=f(x)=3-5 x-2 x^{2}$
$\frac{d y}{d x}=f^{\prime}(x)=-5-4 x$
$\frac{d^{2} y}{d x^{2}}=f^{\prime \prime}(x)=-4$
6. $\frac{d y}{d x}=0 \Rightarrow-5-4 x=0$
$\Rightarrow-5=4 x$
$\therefore x=-\frac{5}{4}$
7. You are told that this point is a maximum.
8. $y=f\left(-\frac{5}{4}\right)=3-5\left(-\frac{5}{4}\right)-2\left(-\frac{5}{4}\right)^{2}$
$=3+\frac{25}{4}-2\left(\frac{25}{16}\right)=3+\frac{25}{4}-\frac{25}{8}=\frac{49}{8} \Rightarrow\left(-\frac{5}{4}, \frac{49}{8}\right)$ is the local maximum.

6 (c) (ii)

$f(x)=0 \Rightarrow 3-5 x-2 x^{2}=0$
$\Rightarrow 2 x^{2}+5 x-3=0$
$\Rightarrow(2 x-1)(x+3)=0$
Graph cuts x-axis: Put $f(x)=0$.
$\Rightarrow x=-3, \frac{1}{2}$

6 (c) (iii)

From part (i) you have found out the coordinates of the local maximum: $\left(-\frac{5}{4}, \frac{49}{8}\right)$
From part (ii) you have found out where the graph cuts the x-axis: $(-3,0),\left(\frac{1}{2}, 0\right)$
Draw the quadratic graph using these points.

1996

6 (b) Let $g(x)=x^{2}+b x+c, x \in \mathbf{R}$.
The solutions of $g(x)=0$ are symmetrical about the line $x=1$.
If $x=-3$ is one solution of $g(x)=0$, find the other solution.
Find the value of b and the value of c.

Solution

$g(x)=x^{2}+b x+c$ is a quadratic graph as shown to the right.
The line $x=1$ is its axis of symmetry.
-3 is a solution (root) which is a place where the graph cuts the x-axis.
You can see from the diagram that the other solution is $x=5$.
 If you substitute solutions for x in the function $g(x)$, you get zero.
$x=-3: g(-3)=(-3)^{2}+b(-3)+c=0 \Rightarrow 9-3 b+c=0$
$\therefore-3 b+c=-9 \ldots . .(\mathbf{1})$
$x=5: g(5)=(5)^{2}+b(5)+c=0 \Rightarrow 25+5 b+c=0$
$\therefore 5 b+c=-25$....(2)
Solve equation (1) and (2) simultaneously.

$$
\begin{array}{|c}
-3 b+c=-9 \ldots . .(\mathbf{1})(\times-1) \\
5 b+c=-25 . .(2)
\end{array} \rightarrow \begin{aligned}
& 3 b-c=9 \\
& \frac{5 b+c=-25}{} \\
& 8 b \quad=-16 \Rightarrow b=-2
\end{aligned}
$$

Substitute this value of b into Eqn. (2).
$5(-2)+c=-25 \Rightarrow-10+c=-25 \Rightarrow c=-15$

