Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

Lesson No. 10: Periodic Functions

2006

6 (a) $f: x \rightarrow f(x)$ is a periodic function defined for $x \in \mathbf{R}$.
The period is as indicated in the diagram.

(i) Write down the period and the range of the function.
(ii) Find f (44).

Solution
6 (a) (i)
Period $=8$
Range $=[-1,2]$
Every periodic function has two important features:

1. Period:

The length of the wave along the x-axis before it repeats itself.
2. Range:

This is the interval between the lowest y value and the highest y value.
6 (a) (ii)
$f(44)=f(4)=2$

The value of the function at any value of x can be worked out from the first wave by dividing the value of x by the period and finding the remainder.

$$
f(x)=f(\text { Remainder })
$$

2003

8 (a) Part of the graph of a periodic function is shown.
Write down the period and range of the function.

Solution

Every periodic function has two important features:

1. Period:

The length of the wave along the x-axis before it repeats itself.
2. Range:

This is the interval between the lowest y value and the highest y value.
Period $=4$
Range $=[0,3]$

2000

6 (b)

The graph shows portion of a periodic function $f: x \rightarrow f(x)$ which is defined for $x \in \mathbf{R}$.
(i) Write down the period and the range of $f(x)$.
(ii) Complete the following table:

x	2	8	14	20	26
$f(x)$					

Solution

6 (b) (i)
Period $=8$
Range $=[0,10]$

6 (b) (ii)

The first 3 values can be
Every periodic function has two important features:

1. Period:

The length of the wave along the x-axis before it repeats itself.
2. Range:

This is the interval between the lowest y value and the highest y value.

The value of the function at any value of x can be worked out from the first wave by dividing the value of x by the period and finding the remainder.

$$
f(x)=f(\text { Remainder })
$$

The last 2 values are worked out using the information as explained in the box above.
Divide the value of the function by the period and take the remainder.

$$
\begin{aligned}
& f(20)=f(4)=0 \\
& f(26)=f(2)=10
\end{aligned}
$$

x	2	8	14	20	26
$f(x)$	10	0	5	0	10

1997

6 (a)

The graph shows portion of a periodic function $f: x \rightarrow f(x)$.
Write down the period and range of the function.
What is the value of $f(77.5)$?

Solution

6 (a)
Every periodic function has two important features:

1. Period:

The length of the wave along the x-axis before it repeats itself.

2. Range:

This is the interval between the lowest y value and the highest y value.
Period = 10
Range $=[0,3]$

The value of the function at any value of x can be worked out from the first wave by dividing the value of x by the period and finding the remainder.

$$
f(x)=f(\text { Remainder })
$$

$$
f(77.5)=f(7.5)=3
$$

