DIFFERENTIATION & FUNCTIONS (Q 6, 7 & 8, PAPER 1)

2008

- 6 (a) Let g(x) = 2x 5, where $x \in \mathbb{R}$. Find the value of x for g(x) = 19.
 - (b) Differentiate $3x^2 + 5$ with respect to x from first principles.
 - (c) Let $f(x) = \frac{x^2 x}{1 x^3}, x \in \mathbb{R}, x \neq 1.$
 - (i) Find f'(x), the derivative of f(x).
 - (ii) Show that the tangent to the curve y = f(x) at the point (0, 0) makes an angle of 135° with the positive sense of the *x*-axis.

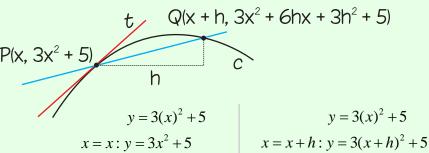
SOLUTION

6 (a)

$$g(x) = 19 \Rightarrow 2x - 5 = 19$$
$$\Rightarrow 2x = 24$$

$$\therefore x = 12$$

6 (b)



Q(x + h, 3x² + 6hx + 3h² + 5)

$$\downarrow$$

P(x, 3x² + 6hx + 3h² + 5)

Slope of
$$PQ = \frac{(3x^2 + 6hx + 3h^2 + 5) - (3x^2 + 5)}{x + h - x}$$

$$= \frac{3x^2 + 6hx + 3h^2 + 5 - 3x^2 - 5}{x + h - x}$$

$$= \frac{6hx + 3h^2}{h}$$

$$= \frac{h(6x + 3h)}{h} = 6x + 3h$$

$$\frac{dy}{dx} = \lim_{h \to 0} (6x + 3h) = 6x$$

$$y = 3(x) + 5$$

$$x = x + h : y = 3(x + h)^{2} + 5$$

$$= 3(x + h)(x + h) + 5$$

$$= 3(x^{2} + hx + hx + h^{2}) + 5$$

$$= 3(x^{2} + 2hx + h^{2}) + 5$$

$$= 3x^{2} + 6hx + 3h^{2} + 5$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

6 (c) (i)

$$u = x^{2} - x \Rightarrow \frac{du}{dx} = 2x - 1$$

$$v = 1 - x^{3} \Rightarrow \frac{dv}{dx} = -3x^{2}$$

$$\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^{2}}$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\frac{dy}{dx} = f'(x) = \frac{(1-x^3)(2x-1) - (x^2 - x)(-3x^2)}{(1-x^3)^2}$$

$$\Rightarrow f'(x) = \frac{2x - 1 - 2x^4 + x^3 + 3x^4 - 3x^3}{(1 - x^3)^2}$$

$$\Rightarrow f'(x) = \frac{x^4 - 2x^3 + 2x - 1}{(1 - x^3)^2}$$

6 (c) (ii)

The slope of the tangent at (0, 0) can be found by calculating f'(0).

$$\left(\frac{dy}{dx}\right)_{x=0} = f'(0) = \frac{(0)^4 - 2(0)^3 + 2(0) - 1}{(1 - (0)^3)^2} = \frac{-1}{1} = -1$$

The slope is also the tan of the angle with the positive sense of the *x*-axis.

$$\therefore \tan \theta = -1 \Rightarrow \theta = 135^{\circ}$$

- (a) Differentiate with respect to x
 - (i) x^7
 - (ii) $5x 3x^4$.
 - (b) (i) Differentiate $(1+3x)(4-x^2)$ with repsect to x.
 - (ii) Given that $y = (3x^2 4x)^8$, find $\frac{dy}{dx}$ when x = 1.
 - (c) A distress flare is tested by firing it vertically upwards from the top of a tower. The height, h metres, of the flare above the ground is given by

$$h = 20 + 90t - 5t^2$$

where *t* is the time in seconds from the instant the flare is fired.

The flare is designed to explode 7 seconds after firing.

- (i) Find the height above the ground at which the flare explodes.
- (ii) Find the speed of the flare at the instant it explodes.
- (iii) If the flare failed to explode, find the greatest height above the ground it would reach before falling back down.

SOLUTION

7 (a) (i)

$$y = x^7 \Rightarrow \frac{dy}{dx} = 7x^6$$
 $y = x^n \Rightarrow \frac{dy}{dx} = nx^{n-1}$

7 (a) (ii)

$$y = 5x - 3x^4 \Rightarrow \frac{dy}{dx} = 5 - 12x^3$$

$$u = (1+3x) \Rightarrow \frac{du}{dx} = 3$$

$$v = (4-x^2) \Rightarrow \frac{dv}{dx} = -2x$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{dy}{dx} = (1+3x)(-2x) + (4-x^2)(3)$$

$$\Rightarrow \frac{dy}{dx} = -2x - 6x^2 + 12 - 3x^2$$

$$\therefore \frac{dy}{dx} = 12 - 2x - 9x^2$$

7 (b) (ii)

Move the power down in front of the bracket.

Take one away from the power.

Multiply by the differentiation of the inside of the bracket.

$$y = (3x^{2} - 4x)^{8}$$

$$\Rightarrow \frac{dy}{dx} = 8(3x^{2} - 4x)^{7}(6x - 4)$$

$$\therefore \left(\frac{dy}{dx}\right)_{x=1} = 8(3(1)^{2} - 4(1))^{7}(6(1) - 4) = 8(3 - 4)^{7}(6 - 4)$$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{x=1} = 8(-1)^{7}(2) = 8(-1)(2)$$

$$\therefore \left(\frac{dy}{dx}\right)_{x=1} = -16$$

7 (c) (i)

The flare explodes after 7 seconds. Let t = 7 s to find the height h.

$$h = 20 + 90t - 5t^{2}$$
⇒ $h = 20 + 90(7) - 5(7)^{2}$
⇒ $h = 20 + 630 - 5 \times 49$
⇒ $h = 20 + 630 - 245$
∴ $h = 405 \text{ m}$

7 (c) (ii)

Differentiate the height h with respect to time t to find the speed v after 7 seconds.

$$v = \frac{dh}{dt} = 90 - 10t$$

$$v = \frac{ds}{dt}$$

$$\Rightarrow \left(\frac{dh}{dt}\right)_{t=7} = 90 - 10(7)$$

$$\therefore v = 90 - 70 = 20 \text{ m/s}$$

7 (c) (iii)

At the greatest height h the velocity of the flare v = 0. Put the velocity equal to zero and solve for t.

$$v = 0 \Rightarrow 90 - 10t = 0$$
$$\Rightarrow 90 = 10t$$
$$\therefore t = 9 \text{ s}$$

It takes 9 seconds to reach the greatest height. Let t = 9 s in the formula for the height h.

$$h = 20 + 90(9) - 5(9)^{2}$$

⇒ $h = 20 + 810 - 5 \times 81$
⇒ $h = 20 + 810 - 405$
∴ $h = 425 \text{ m}$

- 8 Let $f(x) = x^3 9x^2 + 24x 18$, where $x \in \mathbf{R}$.
 - (i) Find f(1) and f(5).
 - (ii) Find f'(x), the derivative of f(x).
 - (iii) Find the co-ordinates of the local maximum point and of the local minimum point of the curve y = f(x).
 - (iv) Draw the graph of the function f in the domain $1 \le x \le 5$.
 - (v) Use your graph to write down the range of values of x for which f'(x) < 0.
 - (vi) The line y = -3x + c is a tangent to the curve y = f(x). Find the value of c.

SOLUTION

8 (i)

$$f(x) = x^3 - 9x^2 + 24x - 18$$

$$\Rightarrow f(1) = (1)^3 - 9(1)^2 + 24(1) - 18 = 1 - 9 + 24 - 18 = -2$$

$$\Rightarrow f(5) = (5)^3 - 9(5)^2 + 24(5) - 18 = 125 - 225 + 120 - 18 = 2$$

8 (ii)

$$f(x) = x^3 - 9x^2 + 24x - 18$$

$$\Rightarrow f'(x) = 3x^2 - 18x + 24$$

$$y = x^n \Rightarrow \frac{dy}{dx} = nx^{n-1}$$

8 (iii)

$$f'(x) = 3x^2 - 18x + 24$$

$$f'(x) = 0 \Rightarrow 3x^2 - 18x + 24 = 0$$
$$\Rightarrow x^2 - 6x + 8 = 0$$
$$\Rightarrow (x - 2)(x - 4) = 0$$
$$\therefore x = 2, 4$$

Turning Point
$$\Rightarrow \frac{dy}{dx} = 0$$

$$f(2) = (2)^3 - 9(2)^2 + 24(2) - 18 = 8 - 36 + 48 - 18 = 2 \Rightarrow (2, 2)$$
 is a local maximum.
 $f(4) = (4)^3 - 9(4)^2 + 24(4) - 18 = 64 - 144 + 96 - 18 = -2 \Rightarrow (4, -2)$ is a local minimum.

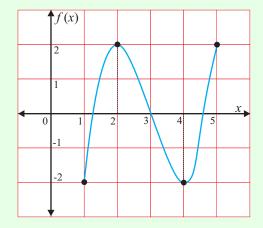
[(2, 2) is the local maximum as its y coordinate is greater than the y coordinate of the other point.]

8 (iv)

From part (i), you worked out 2 points: (1, -2) and (5, 2).

From part (iii), you worked out 2 more points:

Local maximum (2, 2) and local minimum (4, -2).



8 (v)

Positive Slope: $\frac{dy}{dx} > 0$

Negative Slope: $\frac{dy}{dx} < 0$

You can see from the graph that it is decreasing (going downhill as you walk from left to right) for values of *x* from 2 to 4.

8 (vi)

Find the slope of the tangent by differentiating its equation.

$$y = -3x + c \Rightarrow \frac{dy}{dx} = -3$$

Find the point on the curve which has a slope of -3 by putting f'(x) = -3 and solving for x.

$$f'(x) = -3 \Rightarrow 3x^2 - 18x + 24 = -3$$

$$\Rightarrow$$
 3 x^2 - 18 x + 27 = 0

$$\Rightarrow x^2 - 6x + 9 = 0$$

$$\Rightarrow (x-3)(x-3) = 0$$

$$\therefore x = 3$$

Find the co-ordinates of the point of contact with the tangent by finding f(3).

$$f(x) = x^3 - 9x^2 + 24x - 18$$

$$\Rightarrow f(3) = (3)^3 - 9(3)^2 + 24(3) - 18$$

$$\Rightarrow f(3) = 27 - 81 + 72 - 18 = 0$$

 \Rightarrow (3, 0) is the point of contact between the curve and tangent.

$$(3, 0) \in y = -3x + c$$

$$\Rightarrow$$
 0 = -3(3) + c

$$\Rightarrow 0 = -9 + c$$

$$\therefore c = 9$$