Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

2007

6 (a) Let $g(x)=x^{2}-6 x, x \in \mathbf{R}$.
(i) Write down $g^{\prime}(x)$, the derivative of $g(x)$.
(ii) For what value of x is $g^{\prime}(x)=0$?
(b) A cold object is placed in a warm room.

Its temperature C degrees after time t minutes is shown in the following graph.

(i) After what time interval is the temperature of the object 0 degrees?
(ii) What is the rise in temperature of the object in the first 10 minutes?
(iii) The relationship between the temperature C and the time t is given by

$$
C=\frac{1}{2}(t+k) .
$$

Find the value of k.
(c) Let $f(x)=(5 x-2)^{4}$ for $x \in \mathbf{R}$.
(i) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(ii) Find the co-ordinates of the point on the curve $y=f(x)$ at which the slope of the tangent is 20 .

Solution

6 (a) (i)

$$
y=x^{n} \Rightarrow \frac{d y}{d x}=n x^{n-1}
$$

Multiply by a constant rule: If $y=c u$, where c is a constant and u is a function of $x, \frac{d y}{d x}=c \times \frac{d u}{d x}$.
$g(x)=x^{2}-6 x \Rightarrow g^{\prime}(x)=2 x-6$
6 (a) (ii)
$g^{\prime}(x)=0 \Rightarrow 2 x-6=0$
$\Rightarrow 2 x=6 \Rightarrow x=3$

6 (b) (i)

Look at the graph. After 0 minutes the temperature is -3 degrees.
After 6 minutes the temperature reaches 0 degrees.
Ans: 6 minutes

6 (b) (ii)

Look at the graph. After 0 minutes the temperature is -3 degrees.
After 10 minutes the temperature is 2 degrees.
Therefore, the change in temperature in the first 10 minutes is $2-(-3)=5$ degrees.

6 (b) (iii)

From the graph you can see that $C=2$ degrees when $t=10$ minutes.

$$
\begin{aligned}
& C=\frac{1}{2}(t+k) \\
& \Rightarrow 2=\frac{1}{2}(10+k) \\
& \Rightarrow 4=10+k \\
& \Rightarrow k=-6
\end{aligned}
$$

6 (c) (i)
$f(x)=(5 x-2)^{4}$
$\Rightarrow f^{\prime}(x)=4(5 x-2)^{3}(5)$
$\Rightarrow f^{\prime}(x)=20(5 x-2)^{3}$

Move the power down in front of the bracket.
Take one away from the power.
Multiply by the differentiation of the inside of the bracket.

6 (c) (ii)
Steps: Finding points of contact given the slope, m, of the tangent

1. Find $\frac{d y}{d x}$.
2. Put $\frac{d y}{d x}=m$ and solve for x.
3. Find the corresponding y values.
4. $f^{\prime}(x)=20(5 x-2)^{3}$
5. $f^{\prime}(x)=20 \Rightarrow 20(5 x-2)^{3}=20$
$\Rightarrow(5 x-2)^{3}=1$
$\Rightarrow 5 x-2=1$
$\Rightarrow 5 x=3$
$\Rightarrow x=\frac{3}{5}$
6. $f(x)=(5 x-2)^{4}$
$\Rightarrow f\left(\frac{3}{5}\right)=\left(5\left(\frac{3}{5}\right)-2\right)^{4}$
$\Rightarrow f\left(\frac{3}{5}\right)=(3-2)^{4}$
$\Rightarrow f\left(\frac{3}{5}\right)=(1)^{4}=1$
Point: $\left(\frac{3}{5}, 1\right)$

7 (a) Differentiate $6 x^{4}-3 x^{2}+7 x$ with respect to x.
(b) (i) Differentiate $\left(x^{2}+9\right)\left(4 x^{3}+5\right)$ with respect to x.
(ii) Given that $y=\frac{3 x}{2 x+3}$, find $\frac{d y}{d x}$.

Write your answer in the form $\frac{k}{(2 x+3)^{n}}$, where $k, n \in \mathbf{N}$.
(c) A car starts from rest at the point a.

The distance of the car from a, after t seconds, is given by

$$
s=2 t^{2}+2 t
$$

where s is in metres.
(i) Find the speed of the car after 2 seconds.
(ii) Find the acceleration of the car.
(iii) The distance from a to the point b is 24 metres. After how many seconds does the car reach the point b ?

Solution

7 (a)

$$
y=x^{n} \Rightarrow \frac{d y}{d x}=n x^{n-1}
$$

Multiply by a constant rule: If $y=c u$, where c is a constant and u is a function of $x, \frac{d y}{d x}=c \times \frac{d u}{d x}$.
$y=6 x^{4}-3 x^{2}+7 x \Rightarrow \frac{d y}{d x}=24 x^{3}-6 x+7$

7 (b) (i)

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

$\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
$\Rightarrow \frac{d y}{d x}=\left(x^{2}+9\right)\left(12 x^{2}\right)+\left(4 x^{3}+5\right)(2 x)$

$$
\begin{aligned}
& u=x^{2}+9 \Rightarrow \frac{d u}{d x}=2 x+0=2 x \\
& v=4 x^{3}+5 \Rightarrow \frac{d v}{d x}=4 \times 3 x^{2}+0=12 x^{2}
\end{aligned}
$$

$\Rightarrow \frac{d y}{d x}=12 x^{4}+108 x^{2}+8 x^{4}+10 x$
$\Rightarrow \frac{d y}{d x}=20 x^{4}+108 x^{2}+10 x$
7 (b) (ii)

$$
\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

$\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{(2 x+3) 3-(3 x) 2}{(2 x+3)^{2}}$

$$
\begin{aligned}
& u=3 x \Rightarrow \frac{d u}{d x}=3 \\
& v=2 x+3 \Rightarrow \frac{d v}{d x}=2+0=2
\end{aligned}
$$

$\Rightarrow \frac{d y}{d x}=\frac{6 x+9-6 x}{(2 x+3)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{9}{(2 x+3)^{2}}$

7 (c) (i)

Draw up an s, v, a table as shown on the right.
Put $t=2 \mathrm{~s}$ into the velocity equation.
$v=4 t+2$

$$
v=\frac{d s}{d t}
$$

$\Rightarrow v=4(2)+2=8+2=10 \mathrm{~m} / \mathrm{s}$

7 (c) (ii)

$$
\begin{aligned}
& s=2 t^{2}+2 t \\
& v=\frac{d s}{d t}=2 \times 2 t+2=4 t+2 \\
& a=\frac{d v}{d t}=4
\end{aligned}
$$

$a=4 \mathrm{~m} / \mathrm{s}^{2}$

7 (c) (iii)

Put the distance equation equal to 24 m and solve for t.
$s=24 \Rightarrow 2 t^{2}+2 t=24$
$\Rightarrow 2 t^{2}+2 t-24=0$
$\Rightarrow t^{2}+t-12=0$
$\Rightarrow(t+4)(t-3)=0$
$\Rightarrow t=-4,3$
Ignore the negative solution. Therefore $t=3 \mathrm{~s}$.

8 (a) Let $f(x)=\frac{1}{4}(6-2 x)$ for $x \in \mathbf{R}$. Evaluate $f(5)$.
(b) Differentiate $x^{2}-3 x$ with respect to x from first principles.
(c) Let $f(x)=\frac{1}{x+7}, x \in \mathbf{R}, x \neq-7$.
(i) Given that $f(k)=1$, find k.
(ii) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(iii) Show that the curve $y=f(x)$ has no turning points.

Solution

8 (a)
$f(x)=\frac{1}{4}(6-2 x)$
$\Rightarrow f(5)=\frac{1}{4}(6-2(5))$
$\Rightarrow f(5)=\frac{1}{4}(6-10)$
$\Rightarrow f(5)=\frac{1}{4}(-4)$
$\Rightarrow f(5)=-1$
8 (b)

$$
\begin{array}{rl}
y=(x)^{2}-3(x) \\
x=x: y=x^{2}-3 x & y
\end{array} \quad(x)^{2}-3(x) ~ 子 \begin{aligned}
x=x+h: y & =(x+h)^{2}-3(x+h) \\
& =(x+h)(x+h)-3(x+h) \\
& =\left(x^{2}+h x+h x+h^{2}\right)-3(x+h) \\
& =\left(x^{2}+2 h x+h^{2}\right)-3(x+h) \\
& =x^{2}+2 h x+h^{2}-3 x-3 h
\end{aligned}
$$

$$
Q\left(x^{x_{2}}+h, x^{2}+2 h x^{y_{2}}+h^{2}-3 x-3 h\right)
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
\text { Slope of } \begin{aligned}
P Q & =\frac{\left(x^{2}+2 h x+h^{2}-3 x-3 h\right)-\left(x^{2}-3 x\right)}{x+h-x} \\
& =\frac{x^{2}+2 h x+h^{2}-3 x-3 h-x^{2}+3 x}{x+h-x} \\
& =\frac{2 h x+h^{2}-3 h}{h} \\
& =\frac{h(2 x+h-3)}{h}=2 x+h-3
\end{aligned}
$$

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0}(2 x+h-3)=2 x-3
$$

8 (c) (i)
$f(x)=\frac{1}{x+7}$
$f(k)=1 \Rightarrow \frac{1}{(k+7)}=1 \quad[$ Multiply across by $(k+7)$.
$\Rightarrow k+7=1$
$\Rightarrow k=-6$

8 (c) (ii)

$f(x)=\frac{1}{(x+7)}=(x+7)^{-1}$
$\Rightarrow f^{\prime}(x)=-1(x+7)^{-2}(1)$
$\Rightarrow f^{\prime}(x)=-\frac{1}{(x+7)^{2}}$
8 (c) (iii)
$f^{\prime}(x)=0$
$\Rightarrow-\frac{1}{(x+7)^{2}}=0 \quad$ [Multiply across by $(x+7)^{2}$.]
Turning Point $\Rightarrow \frac{d y}{d x}=0$
$\Rightarrow-1=0 \quad$ [This equation is nonsense and has no solutions.]

As there are no solutions for $f^{\prime}(x)=0$, the curve $y=f(x)$ has no turning points.

