Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

2002
6 (a) Let $f(x)=\frac{1}{3}(x-8)$ for $x \in \mathbf{R}$.
Evaluate $f(5)$.
(b) (i) Find $\frac{d y}{d x}$ where $y=(x-1)^{7}$ and evaluate your answer at $x=2$.
(ii) Find $\frac{d y}{d x}$ where $y=\left(x^{3}-3\right)\left(x^{2}-4\right)$ and simplify your answer.
(c) Let $f(x)=x^{3}-a x+7$ for all $x \in \mathbf{R}$ and for $a \in \mathbf{R}$.
(i) The slope of the tangent to the curve $y=f(x)$ at $x=1$ is -9 .

Find the value of a.
(ii) Hence, find the co-ordinates of the local maximum point and the local minimum point on the curve $y=f(x)$.

Solution

6 (a)

$f(x)=\frac{1}{3}(x-8)$
$\Rightarrow f(5)=\frac{1}{3}(5-8)=\frac{1}{3}(-3)=-1$
6 (b) (i)
Move the power down in front of the bracket.
Take one away from the power.
Multiply by the differentiation of the inside of the bracket.
$y=(x-1)^{7}$
$\Rightarrow \frac{d y}{d x}=7(x-1)^{6}(1)=7(x-1)^{6}$

$$
u=(x-1) \Rightarrow \frac{d u}{d x}=1
$$

6 (b) (ii)

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

$y=\left(x^{3}-3\right)\left(x^{2}-4\right)$
$\Rightarrow \frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}=\left(x^{3}-3\right)(2 x)+\left(x^{2}-4\right)\left(3 x^{2}\right)$

$$
\begin{aligned}
& u=\left(x^{3}-3\right) \Rightarrow \frac{d u}{d x}=3 x^{2} \\
& v=\left(x^{2}-4\right) \Rightarrow \frac{d v}{d x}=2 x
\end{aligned}
$$

$\Rightarrow \frac{d y}{d x}=2 x^{4}-6 x+3 x^{4}-12 x^{2}=5 x^{4}-12 x^{2}-6 x$

6 (c) (i)

Find the slope of the curve $\frac{d y}{d x}$ at $x=1,\left(\frac{d y}{d x}\right)_{x=1}$, and put it equal to -9 .
$y=f(x)=x^{3}-a x+7$
$\therefore \frac{d y}{d x}=3 x^{2}-a$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=1}=3(1)^{2}-a=-9$
$\Rightarrow 3-a=-9$
$\therefore a=12$
6 (c) (ii)
$y=f(x)=x^{3}-12 x+7$
$\frac{d y}{d x}=3 x^{2}-12$
$\frac{d^{2} y}{d x^{2}}=6 x$
$\frac{d y}{d x}=0 \Rightarrow 3 x^{2}-12=0$
Turning Point: $\frac{d y}{d x}=0$
$\Rightarrow 3\left(x^{2}-4\right)=0$
$\Rightarrow 3(x+2)(x-2)=0$
$\therefore x=-2,2$
$x=-2: y=f(-2)=(-2)^{3}-12(-2)+7=-8+24+7=23 \Rightarrow(-2,23)$ is a local maximum.
$x=2: y=f(2)=(2)^{3}-12(2)+7=8-24+7=23 \Rightarrow(2,-9)$ is a local minimum.
$[(-2,23)$ is the local maximum as its y coordinate is greater than the y coordinate of the other point.]

7 (a) Differentiate $7 x^{3}-3 x^{2}+9 x$ with respect to x.
(b) (i) Differentiate $x^{5}-17+\frac{1}{x^{5}}$ with respect to x.
(ii) Differentiate $\frac{2 x}{x-1}$ with respect to x and simplify your answer.
(c) A marble rolls along the top of a table. It starts to move at $t=0$ seconds. The distance that it has travelled at t seconds is given by

$$
s=14 t-t^{2}
$$

where s is in centimetres.
(i) What distance has the marble travelled when $t=2$ seconds?
(ii) What is the speed of the marble when $t=5$ seconds?
(iii) When is the speed of the marble equal to zero?
(iv) What is the acceleration of the marble?

Solution

7 (a)

$$
y=x^{n} \Rightarrow \frac{d y}{d x}=n x^{n-1}
$$

Constant Rule: If $y=$ Constant $\Rightarrow \frac{d y}{d x}=0$
Multiply by a constant rule: If $y=c u$, where c is a constant and u is a function of $x, \frac{d y}{d x}=c \times \frac{d u}{d x}$.
$y=7 x^{3}-3 x^{2}+9 x$
$\Rightarrow \frac{d y}{d x}=7 \times 3 x^{2}-3 \times 2 x+9=21 x^{2}-6 x+9$
7 (b) (i)
$y=x^{5}-17+\frac{1}{x^{5}}=x^{5}-17+x^{-5}$
$\Rightarrow \frac{d y}{d x}=5 x^{4}-0-5 x^{-6}$
$\Rightarrow \frac{d y}{d x}=5 x^{4}-\frac{5}{x^{6}}$
7 (b) (ii)
$y=\frac{2 x}{x-1} \Rightarrow \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}=\frac{(x-1) 2-2 x(1)}{(x-1)^{2}}$
$\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x-2-2 x}{(x-1)^{2}}=-\frac{2}{(x-1)^{2}}$

$$
\begin{aligned}
& u=2 x \Rightarrow \frac{d u}{d x}=2 \\
& v=(x-1) \Rightarrow \frac{d v}{d x}=1
\end{aligned}
$$

7 (c) (i)

Draw up a s, v, a table as shown on the right.
you are asked to find the distance s travelled after a time
$t=2$ seconds.
$s=14 t-t^{2} \Rightarrow s=14(2)-(2)^{2}=28-4$

$$
\begin{gathered}
v=\frac{d s}{d t} \\
a=\frac{d v}{d t}
\end{gathered}
$$

$\therefore s=24 \mathrm{~cm}$
7 (c) (ii)
You are asked to find the speed v when
$t=5$ seconds.
$v=14-2 t \Rightarrow v=14-2(5)=14-10$
$\therefore v=4 \mathrm{~cm} / \mathrm{s}$

$$
\begin{aligned}
& s=14 t-t^{2} \\
& v=\frac{d s}{d t}=14-2 t \\
& a=\frac{d v}{d t}=-2
\end{aligned}
$$

7 (c) (iii)

You are asked to find the time t when the speed v is zero.
$v=14-2 t \Rightarrow 0=14-2 t$
$\Rightarrow 2 t=14$
$\therefore t=7 \mathrm{~s}$

7 (c) (iv)

$a=-2 \mathrm{~cm} / \mathrm{s}^{2}$

8 Let $f(x)=\frac{1}{x+2}$.
(i) Find $f(-6), f(-3), f(-1), f(0)$ and $f(2)$.
(ii) For what real value of x is $f(x)$ not defined?
(iii) Draw the graph of $f(x)=\frac{1}{x+2}$ for $-6 \leq x \leq 2$.
(iv) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(v) Find the two values of x at which the slope of the tangent to the graph is $-\frac{1}{9}$.
(vi) Show that there is no tangent to the graph of f that is parallel to the x-axis.

Solution

8 (i)
$f(x)=\frac{1}{x+2}$
$f(-6)=\frac{1}{-6+2}=-\frac{1}{4}=-0.25$
$f(-3)=\frac{1}{-3+2}=-\frac{1}{1}=-1$
$f(-1)=\frac{1}{-1+2}=\frac{1}{1}=1$
$f(0)=\frac{1}{0+2}=\frac{1}{2}=0.5$
$f(2)=\frac{1}{2+2}=\frac{1}{4}=0.25$
8 (ii)
Put the bottom equal to zero. This will give the equation of the gap or the asymptote in the graph. It is also the value of x for which $f(x)$ is not defined.
$x+2=0 \Rightarrow x=-2$
8 (iii)
Use the values from part (i) and the asymptote equation in part (ii) to draw the graph.
Points: $(-6,0.25),(-3,-1),(-1,1),(0,0.5),(2,0.25)$

					1		$f(x)$	
							1.5	

8 (iv)
$f(x)=\frac{1}{(x+2)}=(x+2)^{-1}$
$\Rightarrow f^{\prime}(x)=-1(x+2)^{-2}(1)=-\frac{1}{(x+2)^{2}}$

8 (v)
Steps: Finding points of contact given the slope, m, of the tangent

1. Find $\frac{d y}{d x}$.
2. Put $\frac{d y}{d x}=m$ and solve for x.
3. Find the corresponding y values.
4. $f^{\prime}(x)=\frac{d y}{d x}=-\frac{1}{(x+2)^{2}}$
5. $-\frac{1}{(x+2)^{2}}=-\frac{1}{9} \Rightarrow 9=(x+2)^{2} \quad$ [Multiply across by $9(x+2)^{2}$.]
$\Rightarrow \pm 3=x+2$
$\therefore x=-5,1$
Step $\mathbf{3}$ is not required as you need to find the x values only.

8 (vi)

Any line parallel to the x-axis has a slope of zero.
Put $\frac{d y}{d x}$ equal to zero and show it has no solutions.
$\frac{d y}{d x}=0 \Rightarrow-\frac{1}{(x+2)^{2}}=0 \quad$ [Multiply across by $(x+2)^{2}$.]
$\Rightarrow-1=0$
This equation is nonsense. Therefore, there are no tangents to the graph that are parallel to the x-axis.

