Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

2000
6 (a) Differentiate $7 x+3$ from first principles with respect to x.
(b)

The graph shows portion of a periodic function $f: x \rightarrow f(x)$ which is defined for $x \in \mathbf{R}$.
(i) Write down the period and the range of $f(x)$.
(ii) Complete the following table:

x	2	8	14	20	26
$f(x)$					

(c) Let $g(x)=(2 x+3)\left(x^{2}-1\right)$ for $x \in \mathbf{R}$.
(i) For what two values of x is the slope of the tangent to the curve of $g(x)$ equal to 10 ?
(ii) Find the equations of the two tangents to the curve of $g(x)$ which have slope 10 .

Solution

6 (a)

$P(x, 7 x+3)$

$$
Q\left(x^{x_{2}}+h, 7 x+7 h^{y_{2}}+3\right)
$$

$$
\begin{aligned}
& h \quad y=7(x)+3 \\
& x=x: y=7 x+3
\end{aligned}
$$

$$
\begin{aligned}
y & =7(x)+3 \\
x=x+h: y & =7(x+h)+3 \\
& =7 x+7 h+3
\end{aligned}
$$

$$
P\left(\begin{array}{cc}
x_{1} & \\
x, & 7 x+3
\end{array}\right.
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Slope of $P Q=\frac{(7 x+7 h+3)-(7 x+3)}{x+h-x}$

$$
\begin{aligned}
& =\frac{7 x+7 h+3-7 x-3}{x+h-x} \\
& =\frac{7 h}{h}=7
\end{aligned}
$$

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0}(7)=7
$$

6 (b) (i)

Period $=8$
Range $=[0,10]$

6 (b) (ii)

The first 3 values can be worked out from the graph as shown.
$f(2)=10$
$f(8)=0$
$f(14)=5$

Period: Length of the wave along the x-axis before it repeats itself.

Range: The interval between the lowest y value and the highest y value.

The value of the function at any value of x can be worked out from the first wave by dividing the value of x by the period and finding the remainder.

$$
f(x)=f(\text { Remainder })
$$

The last 2 values are worked out using the information as explained in the box above.
Divide the value of the function by the period and take the remainder.
$f(20)=f(4)=0$
$f(26)=f(2)=10$

x	2	8	14	20	26
$f(x)$	10	0	5	0	10

6 (c) (i)
You need to differentiate the function $g(x)$. You can multiply it out and differentiate term by term or you can use the product rule. Here, we multiply it out.

$$
\begin{aligned}
& g(x)=(2 x+3)\left(x^{2}-1\right)=2 x^{3}-2 x+3 x^{2}-3 \\
& \Rightarrow g(x)=2 x^{3}+3 x^{2}-2 x-3 \\
& \therefore g^{\prime}(x)=2 \times 3 x^{2}+3 \times 2 x-2-0 \\
& \Rightarrow g^{\prime}(x)=6 x^{2}+6 x-2 \\
& g(x)=(2 x+3)\left(x^{2}-1\right) \\
& g^{\prime}(x)=6 x^{2}+6 x-2 \\
& g^{\prime}(x)=10 \Rightarrow 6 x^{2}+6 x-2=10 \\
& \Rightarrow 6 x^{2}+6 x-12=0 \\
& \Rightarrow x^{2}+x-2=0 \\
& \Rightarrow(x+2)(x-1)=0
\end{aligned}
$$

$\therefore x=-2,1$ [Only the x values are required for part (i). However, the y values are required for part (ii).]
$x=-2: y=g(-2)=(2(-2)+3)\left((-2)^{2}-1\right)=(-1)(3)=-3 \Rightarrow(-2,-3)$ is a point of contact.
$x=1: y=g(1)=(2(1)+3)\left((1)^{2}-1\right)=(5)(0)=0 \Rightarrow(1,0)$ is a point of contact.

6 (c) (ii)

Tangent 1: Point ($-2,-3$); $m=10$
Equation of a line: $y-y_{1}=m\left(x-x_{1}\right)$
$\therefore(y-(-3))=10(x-(-2))$
$\Rightarrow y+3=10(x+2)$
$\Rightarrow y+3=10 x+20$
$\Rightarrow 10 x-y+17=0$
Tangent 2: Point (1, 0); $m=10$
$\therefore(y-0)=10(x-1)$
$\Rightarrow y=10 x-10$
$\Rightarrow 10 x-y-10=0$

7 (a) Differentiate with respect to x
(i) $4 x^{2}+5$
(ii) $9 x-x^{3}$.
(b) (i) Find $\frac{d y}{d x}$ when $y=\frac{2 x-7}{x-1}, x \neq 1$.
(ii) Find $\frac{d y}{d x}$ when $y=\left(x^{2}+5 x-1\right)^{3}$.
(c) A car, starting at $t=0$ seconds, travels a distance of s metres in t seconds where

$$
s=30 t-\frac{9}{4} t^{2} .
$$

(i) Find the speed of the car after 2 seconds.
(ii) After how many seconds is the speed of the car equal to zero?
(iii) Find the distance travelled by the car up to the time its speed is zero.

Solution

7 (a) (i)

$$
y=x^{n} \Rightarrow \frac{d y}{d x}=n x^{n-1}
$$

Constant Rule: If $y=$ Constant $\Rightarrow \frac{d y}{d x}=0$
Multiply by a constant rule: If $y=c u$, where c is a constant and u is a function of $x, \frac{d y}{d x}=c \times \frac{d u}{d x}$.
$y=4 x^{2}+5$
$\Rightarrow \frac{d y}{d x}=4 \times 2 x+0=8 x$
7 (a) (ii)
$y=9 x-x^{3}$
$\Rightarrow \frac{d y}{d x}=9-3 x^{2}$
7 (b) (i)

$$
\begin{aligned}
& u=(2 x-7) \Rightarrow \frac{d u}{d x}=2 \\
& v=(x-1) \Rightarrow \frac{d v}{d x}=1
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

$y=\frac{2 x-7}{x-1}$
$\Rightarrow \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}=\frac{(x-1) 2-(2 x-7) 1}{(x-1)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x-2-2 x+7}{(x-1)^{2}}=\frac{5}{(x-1)^{2}}$

7 (b) (ii)

Move the power down in front of the bracket.
Take one away from the power.
Multiply by the differentiation of the inside of the bracket.

$$
u=\left(x^{2}+5 x-1\right) \Rightarrow \frac{d u}{d x}=2 x+5
$$

$y=\left(x^{2}+5 x-1\right)^{3}$
$\Rightarrow \frac{d y}{d x}=3\left(x^{2}+5 x-1\right)^{2}(2 x+5)$
$\Rightarrow \frac{d y}{d x}=(6 x+15)\left(x^{2}+5 x-1\right)^{2}$
7 (c) (i)
Draw up a s, v, a table as shown on the right.
you are asked to find the speed v after a time
$t=2$ seconds.
$v=30-\frac{9}{2} t \Rightarrow v=30-\frac{9}{2}(2)=30-9$

$$
v=\frac{d s}{d t}
$$

\square
$\therefore v=21 \mathrm{~m} / \mathrm{s}$
7 (c) (ii)
You are asked to find the time t when the speed v is zero.
$v=30-\frac{9}{2} t \Rightarrow 0=30-\frac{9}{2} t$
$\Rightarrow 30=\frac{9}{2} t \Rightarrow 60=9 t$

$$
\begin{aligned}
& s=30 t-\frac{9}{4} t^{2} \\
& v=\frac{d s}{d t}=30-\frac{9}{4} \times 2 t=30-\frac{9}{2} t \\
& a=\frac{d v}{d t}=-\frac{9}{2}
\end{aligned}
$$

$\therefore t=\frac{60}{9}=\frac{20}{3} \mathrm{~s}$

7 (c) (iii)

You are asked to find the distance s travelled after a time $t=\frac{20}{3} \mathrm{~s}$.
$s=30 t-\frac{9}{4} t^{2} \Rightarrow s=30\left(\frac{20}{3}\right)-\frac{9}{4}\left(\frac{20}{3}\right)^{2}$
$\Rightarrow s=10(20)-\frac{9}{4}\left(\frac{400}{9}\right)$
$\Rightarrow s=200-100$
$\therefore s=100 \mathrm{~m}$

8 (a) Let $p(x)=3 x-12$.
For what values of x is $p(x)<0$ where x is a positive whole number?
(b) (i) Draw the graph of

$$
g(x)=\frac{1}{x} \text { for }-3 \leq x \leq 3, x \in \mathbf{R} \text { and } x \neq 0 .
$$

(ii) Using the same axes and the same scales, draw the graph of

$$
h(x)=x+1 \text { for }-3 \leq x \leq 3, x \in \mathbf{R} .
$$

(iii) Use your graphs to estimate the values of x for which

$$
\frac{1}{x}=x+1 .
$$

(c) Let $f(x)=x^{3}-3 x^{2}+a x+1$ for all $x \in \mathbf{R}$ and for $a \in \mathbf{R}$.
$f(x)$ has a turning point (a local maximum or a local minimum) at $x=-1$.
(i) Find the value of a.
(ii) Is this turning point a local maximum or a local minimum?

Give a reason for your answer.
(iii) Find the co-ordinates of the other turning point of $f(x)$.

Solution

8 (a)
$p(x)=3 x-12$
$\therefore 3 x-12<0$
$\Rightarrow 3 x<12$
$\Rightarrow x<4$ [The whole positive numbers less than 4 are 1, 2 and 3.]
$\therefore x=\{1,2,3\}$
8 (b) (i)
$x=-3: f(-3)=\frac{1}{-3}=-\frac{1}{3}=-0.33 \Rightarrow(-3,-0.33)$
$x=-2: f(-2)=\frac{1}{-2}=-\frac{1}{2}=-0.5 \Rightarrow(-2,-0.5)$
$x=-1: f(-1)=\frac{1}{-1}=-1 \Rightarrow(-1,-1)$
$x=0$: This is the gap where the function is not defined.
$x=1: f(1)=\frac{1}{1}=1 \Rightarrow(1,1)$

x	$g(x)$
-3	-0.33
-2	0.5
-1	-1
0	Error
1	1
2	0.5
3	0.33

$x=2: f(2)=\frac{1}{2}=0.5 \Rightarrow(2,0.5)$
$x=3: f(3)=\frac{1}{3}=0.33 \Rightarrow(3,0.33)$

8 (b) (ii)
As these graphs are straight lines, you only need to plot the first and last points in the domain.
$h(x)=x+1$
$\Rightarrow h(-3)=-3+1=-2 \Rightarrow(-3,-2)$ is a point on the straight line.

x	$h(x)$
-3	-2
3	4

$\Rightarrow h(3)=3+1=4 \Rightarrow(3,4)$ is a point on the straight line.

8 (b) (iii)

Read off the x values of where the graphs intersect.
$\therefore x=-1.6,0.6$
8 (c) (i)

$$
\text { Turning Point: } \frac{d y}{d x}=0
$$

You are told there is a turning point at $x=-1$. Therefore, you need to find $\frac{d y}{d x}$ at $x=-1$ and set the answer equal to zero as it is a turning point.
$y=f(x)=x^{3}-3 x^{2}+a x+1$
$\therefore \frac{d y}{d x}=3 x^{2}-6 x+a$
$\therefore\left(\frac{d y}{d x}\right)_{x=-1}=3(-1)^{2}-6(-1)+a=0$
$\Rightarrow 3+6+a=0$
$\therefore a=-9$

8 (c) (ii)

The turning point occurs at $\mathrm{x}=-1$. Find the slope just before this $(x=-2)$ and just after ($x=0$)
$y=f(x)=x^{3}-3 x^{2}-9 x+1$
$\Rightarrow \frac{d y}{d x}=3 x^{2}-6 x-9$
$\left(\frac{d y}{d x}\right)_{x=-2}=3(-2)^{2}-6(-2)-9=12+12-9=15$
$\left(\frac{d y}{d x}\right)_{x=0}=3(0)^{2}-6(0)-9=0+0-9=-9$
As the slope changes from positive to negative, the turning point is a local maximum.

8 (c) (iii)
$y=f(x)=x^{3}-3 x^{2}-9 x+1$
$\Rightarrow \frac{d y}{d x}=3 x^{2}-6 x-9$
$\frac{d y}{d x}=0 \Rightarrow 3 x^{2}-6 x-9=0$
$\Rightarrow x^{2}-2 x-3=0$

$\Rightarrow(x-3)(x+1)=0$
$\therefore x=-1,3$
Anyway, it is the turning point at $x=3$ which is of interest.
$\therefore y=f(3)=(3)^{3}-3(3)^{2}-9(3)+1=27-27-27+1=-26$
Therefore, $(3,-26)$ is the other turning point.

