Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

1998

6 (a) If $f(x)=5 x-8$ and $g(x)=13-2 x$, find the value of x for which

$$
f(x)=g(x) .
$$

(b) The speed, v, in metres per second of an engine moving along a track is related to time, t, in seconds by

$$
v=\frac{1}{3}(2 t+5) .
$$

(i) Draw the straight line graph of this relation, putting t on the horizontal axis, for $0 \leq t \leq 8$.
(ii) Use your graph to estimate the speed when $t=2.5$ seconds.
(iii) Use your graph to estimate the time at which the speed reaches 6 metres per second.
(c) $f(x)=(x+k)(x-2)^{2}$, where k is a real number.
(i) If $f(3)=7$, find the value of k.
(ii) Using this value for k, find the coordinates of the local maximum and of the local minimum of $f(x)$.

Solution

6 (a)
$f(x)=g(x)$
$\Rightarrow 5 x-8=13-2 x$
$\Rightarrow 5 x+2 x=13+8$
$\Rightarrow 7 x=21$
$\therefore x=3$
6 (b) (i)
As these graphs are straight lines, you only need to plot the first and last points in the domain.
$t=0: v=\frac{1}{3}(2 t+5)=\frac{1}{3}(2(0)+5)=\frac{1}{3}(5)=\frac{5}{3} \Rightarrow\left(0, \frac{5}{3}\right)$ is a point on the line.
$t=8: v=\frac{1}{3}(2 t+5)=\frac{1}{3}(2(8)+5)=\frac{1}{3}(21)=7 \Rightarrow(8,7)$ is a point on the line.

6 (b) (ii)

Start at 2.5 s along the horizontal axis and go straight up till you meet the graph.
Now go straight across to the vertical axis and read off the speed v.
$\therefore v=3.3 \mathrm{~m} / \mathrm{s}$

6 (b) (iii)

Start at $6 \mathrm{~m} / \mathrm{s}$ along the vertical axis and go straight across till you meet the graph. Now go straight down to the horizontal axis and read off the time t.
$\therefore t=6.5 \mathrm{~s}$

6 (c) (i)
$f(x)=(x+k)(x-2)^{2}$
$f(3)=7 \Rightarrow(3+k)(3-2)^{2}=7$
$\Rightarrow(3+k)(1)^{2}=7$
$\Rightarrow 3+k=7$
$\therefore k=4$

6 (c) (ii)

$f(x)=(x+4)(x-2)^{2}$ [Multiply this out and tidy up.]
$\Rightarrow f(x)=(x+4)\left(x^{2}-4 x+4\right)$
$\Rightarrow f(x)=x^{3}-4 x^{2}+4 x+4 x^{2}-16 x+16$
$\therefore f(x)=x^{3}-12 x+16$
$y=f(x)=x^{3}-12 x+16$
$\frac{d y}{d x}=f^{\prime}(x)=3 x^{2}-12$
$\frac{d y}{d x}=0 \Rightarrow 3 x^{2}-12=0$
Turning Point: $\frac{d y}{d x}=0$
$\Rightarrow 3\left(x^{2}-4\right)=0 \quad a^{2}-b^{2}=(a+b)(a-b)$
$\Rightarrow 3(x+2)(x-2)=0$
$\therefore x=-2,2$
$x=-2: y=f(-2)=(-2)^{3}-12(-2)+16=-8+24+16=32 \Rightarrow(-2,32)$ is a local maximum.
$x=2: y=f(2)=(2)^{3}-12(2)+16=8-24+16=0 \Rightarrow(2,0)$ is a local minimum.
$[(-2,32)$ is the local maximum as its y coordinate is greater than the y coordinate of the other point.]

7 (a) Differentiate with respect to x
(i) $x^{2}-3 x$
(ii) $\frac{1}{x^{2}}$.
(b) (i) Find $\frac{d y}{d x}$ when $y=\frac{2 x}{x^{2}+1}$.
(ii) Find $\frac{d y}{d x}$ when $y=\left(4-3 x^{2}\right)^{7}$ and write down the range of values of x for which $\frac{d y}{d x}>0$.
(c) The volume of water, V, in cm^{3}, that remains in a leaking tank after t seconds is given by

$$
V=45000-300 t+0.5 t^{2}
$$

(i) After how many seconds will the tank be empty?
(ii) Find the rate of change of the volume with respect to t when $t=50$ seconds.

Solution

7 (a) (i)

$$
y=x^{n} \Rightarrow \frac{d y}{d x}=n x^{n-1}
$$

Constant Rule: If $y=$ Constant $\Rightarrow \frac{d y}{d x}=0$
Multiply by a constant rule: If $y=c u$, where c is a constant and u is a function of $x, \frac{d y}{d x}=c \times \frac{d u}{d x}$.
$y=x^{2}-3 x$
$\Rightarrow \frac{d y}{d x}=2 x-3$

7 (a) (ii)

$y=\frac{1}{x^{2}}=x^{-2}$
$a^{-n}=\frac{1}{a^{n}}$...Power Rule No. 4
$\Rightarrow \frac{d y}{d x}=-2 x^{-3}=-\frac{2}{x^{3}}$

7 (b) (i)
$u=2 x \Rightarrow \frac{d u}{d x}=2$
$v=\left(x^{2}+1\right) \Rightarrow \frac{d v}{d x}=2 x$
$\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
$y=\frac{2 x}{x^{2}+1}$
$\Rightarrow \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}=\frac{\left(x^{2}+1\right) 2-2 x(2 x)}{\left(x^{2}+1\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{2 x^{2}+2-4 x^{2}}{\left(x^{2}+1\right)^{2}}=\frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}}$
7 (b) (i)
Move the power down in front of the bracket.
Take one away from the power.
Multiply by the differentiation of the inside of the bracket.
$u=\left(4-3 x^{2}\right) \Rightarrow \frac{d u}{d x}=-6 x$
$y=\left(4-3 x^{2}\right)^{7} \Rightarrow \frac{d y}{d x}=7\left(4-3 x^{2}\right)^{6}(-6 x)=-42 x\left(4-3 x^{2}\right)^{6}$
$\frac{d y}{d x}>0 \Rightarrow-42 x\left(4-3 x^{2}\right)^{6}>0$
What values of x make this statement true?
$\left(4-3 x^{2}\right)^{6}>0$ is true for all values of x. No matter what value is inside the bracket, once you raise it to an even power the value will be positive.
This means that x must be negative so that the $-42 x$ is also positive.
Therefore, $x<0$.
7 (c) (i)
After what time t with the volume $V=0$?
$V=45000-300 t+0.5 t^{2} \Rightarrow 0=45000-300 t+0.5 t^{2}$
$\Rightarrow t^{2}-600 t+90000=0$
$\Rightarrow(t-300)(t-300)=0$
$\therefore t=300 \mathrm{~s}$

7 (c) (ii)

You need to find the rate of change of the volume, $\frac{d V}{d t}$, at a time $t=50 \mathrm{~s},\left(\frac{d V}{d t}\right)_{t=50}$.
$V=45000-300 t+0.5 t^{2} \Rightarrow \frac{d V}{d t}=-300+0.5 \times 2 t=-300+t$
$\therefore\left(\frac{d V}{d t}\right)_{t=50}=-300+50=-250 \mathrm{~cm}^{3} / \mathrm{s}$

8 Let $f(x)=\frac{1}{x-1}$, for $x \in \mathbf{R}$ and $x \neq 1$.
(i) Find the value of $f(-2), f(0), f\left(\frac{3}{2}\right)$ and $f(5)$.
(ii) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(iii) Draw the graph of $f(x)$ for $-2 \leq x \leq 5$.
(iv) Find the equation of the tangent T to the curve at the point $(0,-1)$.
(v) Find the coordinates of the other point on the graph of $f(x)$ at which the tangent to the curve is parallel to T.

Solution

8 (i)
$f(x)=\frac{1}{x-1}$
$f(-2)=\frac{1}{(-2)-1}=\frac{1}{-3}=-\frac{1}{3}=-0.33$
$f(0)=\frac{1}{(0)-1}=\frac{1}{-1}=-1$

x	$f(x)$
-2	-0.33
0	-1
$\frac{3}{2}$	2
5	0.25

$f\left(\frac{3}{2}\right)=\frac{1}{\left(\frac{3}{2}\right)-1}=\frac{1}{\frac{1}{2}}=2$
$f(5)=\frac{1}{(5)-1}=\frac{1}{4}=0.25$
8 (ii)
$f(x)=\frac{1}{(x-1)}=(x-1)^{-1}$
$\Rightarrow f^{\prime}(x)=-1(x-1)^{-2}=-\frac{1}{(x-1)^{2}}$

8 (iii)

Put $(x-1)=0 \Rightarrow x=1$ [This is the gap in the graph.]

			$f(x)$						
			3						
			2						
			1						
									0
	-3	$\cdot-2$	-1	1	2	3	4	5	x
			-1						
			-2						
				$x=1$					

8 (iv)
$\frac{d y}{d x}=f^{\prime}(x)=-\frac{1}{(x-1)^{2}}$
$\left(\frac{d y}{d x}\right)_{x=0}=-\frac{1}{(0-1)^{2}}=-\frac{1}{(-1)^{2}}=-1$
The point of contact is given as $(0,-1)$.
Equation of the tangent T : Point $(0,-1), m=-1$
$T:(y-(-1))=-1(x-0)$
$\Rightarrow T: y+1=-x \quad$ Equation of a line: $y-y_{1}=m\left(x-x_{1}\right)$
$\therefore T: x+y+1=0$

8 (v)
A parallel tangent has the same slope as $T . \therefore m=-1$.
$\frac{d y}{d x}=-\frac{1}{(x-1)^{2}}$
. $\frac{d y}{d x}=-1 \Rightarrow-\frac{1}{(x-1)^{2}}=-1$
$\Rightarrow 1=(x-1)^{2}$
$\Rightarrow \pm 1=x-1$
$\therefore x=0$, $2 \quad$ [Ignore the first solution as that was used in part (iv).]
$y=f(2)=\frac{1}{x-1}=\frac{1}{2-1}=\frac{1}{1}=1 \Rightarrow(2,1)$ is the other point.

