## Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

## 1997

6 (a)


The graph shows portion of a periodic function $f: x \rightarrow f(x)$.
Write down the period and range of the function.
What is the value of $f(77.5)$ ?
(b) Differentiate from first principles

$$
3 x^{2}-2
$$

with respect to $x$.
(c) Let $f(x)=a x^{3}+b x+c$, for all $x \in \mathbf{R}$ and for $a, b, c \in \mathbf{R}$.

Use the information which follows to find the value of $a$, of $b$ and of $c$ :
(i) $f(0)=3$
(ii) the slope of the tangent to the curve of $f(x)$ at $x=1$ is -18
(iii) the curve of $f(x)$ has a local maximum at $x=2$.

## Solution

6 (a)
Period: Length of the wave along the $x$-axis before it repeats itself.

Range: The interval between the lowest $y$ value and the highest $y$ value.

Period $=10$
Range $=[0,3]$

The value of the function at any value of $x$ can be worked out from the first wave by dividing the value of $x$ by the period and finding the remainder.

$$
f(x)=f \text { (Remainder) }
$$

$f(77.5)=f(7.5)=3$

6 (b)

$$
\begin{aligned}
& P\left(x, 3 x^{2}-2\right) \\
& y=3(x)^{2}-2 \\
& x=x: y=3 x^{2}-2 \\
& x=x+h: y=3(x)^{2}-2 \\
&=3(x+h)(x+h)-2 \\
&=3\left(x^{2}+h x+h x+h^{2}\right)-2 \\
&=3\left(x^{2}+2 h x+h^{2}\right)-2 \\
&=3 x^{2}+6 h x+3 h^{2}-2
\end{aligned}
$$



$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Slope of $P Q=\frac{\left(3 x^{2}+6 h x+3 h^{2}-2\right)-\left(3 x^{2}-2\right)}{x+h-x}$

$$
\begin{aligned}
& =\frac{3 x^{2}+6 h x+3 h^{2}-2-3 x^{2}+2}{x+h-x} \\
& =\frac{6 h x+3 h^{2}}{h}=\frac{h(6 x+3 h)}{h} \\
& =6 x+3 h
\end{aligned}
$$

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0}(6 x+3 h)=6 x
$$

6 (c) (i)
$f(x)=a x^{3}+b x+c$
$f(0)=3 \Rightarrow a(0)^{3}+b(0)+c=3$
$\therefore c=3$

## 6 (c) (ii)

To find the slope of the tangent to the curve at $x=1$, find $\left(\frac{d y}{d x}\right)_{x=1}$ and put it equal to -18 .
$y=f(x)=a x^{3}+b x+3$
$\therefore \frac{d y}{d x}=3 a x^{2}+b$
$\Rightarrow\left(\frac{d y}{d x}\right)_{x=1}=3 a(1)^{2}+b=-18$
$\therefore 3 a+b=-18$

## 6 (c) (iii)

To find the local maximum you put $\frac{d y}{d x}=0$ and solve for $x$. You are told that you get an answer of $x=2$ when you do this.

$$
\begin{align*}
& \frac{d y}{d x}=0 \Rightarrow 3 a x^{2}+b=0 \\
& \therefore 3 a(2)^{2}+b=0 \\
& \Rightarrow 12 a+b=0 \ldots .(2) \tag{2}
\end{align*}
$$

You need to solve equations (1) and (2) to find $a$ and $b$.

$$
\begin{array}{|l}
\hline \begin{array}{l}
3 a+b=-18 . .(1)(\times-1) \\
12 a+b=0 \ldots . . .(2)
\end{array}
\end{array} \rightarrow \begin{aligned}
& -3 a-b=18 \\
& \frac{12 a+b=0}{9 a}=18 \Rightarrow a=2
\end{aligned}
$$

Substitute $a=2$ into Equation (2).
$\therefore 12(2)+b=0 \Rightarrow 24+b=0$
$\therefore b=-24$
Ans: $a=2, b=-24, c=3$

7 (a) Differentiate with respect to $x$
(i) $-x^{2}$
(ii) $x^{4}+x+1$.
(b) (i) Find $\frac{d y}{d x}$ when $y=\left(x^{2}-3\right)(1-x)$.
(ii) Find the value of $\frac{d y}{d x}$ at $x=-1$ when $y=(3 x+1)^{4}$.
(c) The distance $s$ metres of an object from a fixed point at $t$ seconds is given by

$$
s=\frac{t+1}{t+3}
$$

(i) At what time is the object 0.75 m from a fixed point?
(ii) What is the speed of the object, in terms of $t$, at $t$ seconds?
(iii) After how many seconds will the speed of the object be less than $0.02 \mathrm{~m} / \mathrm{s}$ ?

## Solution

7 (a) (i)

$$
y=x^{n} \Rightarrow \frac{d y}{d x}=n x^{n-1}
$$

Constant Rule: If $y=$ Constant $\Rightarrow \frac{d y}{d x}=0$
Multiply by a constant rule: If $y=c u$, where $c$ is a constant and $u$ is a function of $x, \frac{d y}{d x}=c \times \frac{d u}{d x}$. $y=-x^{2} \Rightarrow \frac{d y}{d x}=-1 \times 2 x=-2 x$

## 7 (a) (ii)

$y=x^{4}+x+1 \Rightarrow \frac{d y}{d x}=4 x^{3}+1+0=4 x^{3}+1$
7 (b) (i)
You can multiply out the brackets and differentiate term by term or you can use the product rule.
Method 1: Multiply out the brackets.
$y=\left(x^{2}-3\right)(1-x)=x^{2}-x^{3}-3+3 x$
$\therefore y=-x^{3}+x^{2}+3 x-3$
$\Rightarrow \frac{d y}{d x}=-3 x^{2}+2 x+3$

Method 2: Product rule

$$
\begin{aligned}
& u=\left(x^{2}-3\right) \Rightarrow \frac{d u}{d x}=2 x \\
& v=(1-x) \Rightarrow \frac{d v}{d x}=-1
\end{aligned}
$$

$$
\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

$y=\left(x^{2}-3\right)(1-x)$
$\therefore \frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}=\left(x^{2}-3\right)(-1)+(1-x)(2 x)$
$\Rightarrow \frac{d y}{d x}=-x^{2}+3+2 x-2 x^{2}$
$\Rightarrow \frac{d y}{d x}=-3 x^{2}+2 x+3$
7 (b) (ii)
Move the power down in front of the bracket.
Take one away from the power.
Multiply by the differentiation of the inside of the bracket.

$$
u=3 x+1 \Rightarrow \frac{d u}{d x}=3
$$

$y=(3 x+1)^{4} \Rightarrow \frac{d y}{d x}=4(3 x+1)^{3}(3)=12(3 x+1)^{3}$
$\therefore\left(\frac{d y}{d x}\right)_{x=-1}=12(3(-1)+1)^{3}=12(-3+1)^{3}$
$=12(-2)^{3}=12(-8)=-96$

## 7 (c) (i)

Find the time $t$ at which the distance $s=0.75 \mathrm{~m}$.
$s=\frac{t+1}{t+3} \Rightarrow 0.75=\frac{t+1}{t+3}$ [Multiply each side by $(t+3)$.]
$\Rightarrow 0.75(t+3)=t+1$
$\Rightarrow 0.75 t+2.25=t+1$
$\Rightarrow 2.25-1=t-0.75 t$
$\Rightarrow 1.25=0.25 t$
$\therefore t=\frac{1.25}{0.25}=5 \mathrm{~s}$

## 7 (c) (ii)

You need to differentiate $s=\frac{t+1}{t+3}$ with respect to $t$ to find the

$$
v=\frac{d s}{d t}
$$ speed $v$. This requires you to use the quotient rule.

$$
\begin{aligned}
& u=t+1 \Rightarrow \frac{d u}{d t}=1 \\
& v=t+3 \Rightarrow \frac{d v}{d t}=1
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

$s=\frac{t+1}{t+3} \longleftarrow u$
$\Rightarrow \frac{d s}{d t}=\frac{v \frac{d u}{d t}-u \frac{d v}{d t}}{v^{2}}=\frac{(t+3)(1)-(t+1)(1)}{(t+3)^{2}}$
$\Rightarrow \frac{d s}{d t}=\frac{t+3-t-1}{(t+3)^{2}}=\frac{2}{(t+3)^{2}}$
$\therefore v=\frac{2}{(t+3)^{2}}$

## 7 (c) (iii)

Find out the time $t$ it takes to reach a speed $v=0.02 \mathrm{~m} / \mathrm{s}$.
$v=\frac{2}{(t+3)^{2}} \Rightarrow 0.02=\frac{2}{(t+3)^{2}} \quad\left[\right.$ Multiply across by $(t+3)^{2}$.]
$\Rightarrow 0.02(t+3)^{2}=2$
$\Rightarrow(t+3)^{2}=\frac{2}{0.02}=100$
$\Rightarrow(t+3)= \pm 10 \quad$ [Take the square root of both sides.]
$\therefore t=7,-13$ [Ignore the negative solution as time must by positive.]
Therefore, $t=7$ seconds. After 7 seconds, the speed will be less than $0.02 \mathrm{~m} / \mathrm{s}$.

8 (a) Let $f(x)=x^{2}-4 x$, for $x \in \mathbf{R}$.
Find $f^{\prime}(x)$, the derivative of $f(x)$.
For what value of $x$ is $f^{\prime}(x)=0$ ?
(b) Find the equation of the tangent to the curve

$$
y=x^{3}-4 x+7
$$

at the point where $x=1$.
(c) Draw a graph of

$$
g(x)=\frac{1}{x+2}
$$

for $0 \leq x \leq 4, x \in \mathbf{R}$.
Using the same axes and the same scales draw the graph of

$$
h(x)=x-2 .
$$

Show how your graphs may be used to estimate the value of $\sqrt{5}$.

## Solution

8 (a)

$$
y=x^{n} \Rightarrow \frac{d y}{d x}=n x^{n-1}
$$

Constant Rule: If $y=$ Constant $\Rightarrow \frac{d y}{d x}=0$
Multiply by a constant rule: If $y=c u$, where $c$ is a constant and $u$ is a function of $x, \frac{d y}{d x}=c \times \frac{d u}{d x}$.
$y=f(x)=x^{2}-4 x$
$\Rightarrow \frac{d y}{d x}=f^{\prime}(x)=2 x-4$
$f^{\prime}(x)=0 \Rightarrow 2 x-4=0$
$\Rightarrow 2 x=4$
$\therefore x=2$
8 (b)
$y=f(x)=x^{3}-4 x+7$
$\Rightarrow \frac{d y}{d x}=3 x^{2}-4$
$\left(\frac{d y}{d x}\right)_{x=1}=3 x^{2}-4=3(1)^{2}-4=3-4=-1 \Rightarrow m=-1$
$x=1: y=f(1)=(1)^{3}-4(1)+7=1-4+7=4 \Rightarrow\left(x_{1}, y_{1}\right)=(1,4)$
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-4=-1(x-1)$
$y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-4=-x+1$
$\Rightarrow x+y-5=0$

## 8 (c)

Put $x+2=0 \Rightarrow x=-2$. This line represents the gap in the graph
$g(x)=\frac{1}{x+2}$
$g(0)=\frac{1}{0+2}=\frac{1}{2} \Rightarrow\left(0, \frac{1}{2}\right)$ is a point on the graph.
$g(1)=\frac{1}{1+2}=\frac{1}{3} \Rightarrow\left(0, \frac{1}{3}\right)$ is a point on the graph.
$g(2)=\frac{1}{2+2}=\frac{1}{4} \Rightarrow\left(0, \frac{1}{4}\right)$ is a point on the graph.
$g(3)=\frac{1}{3+2}=\frac{1}{5} \Rightarrow\left(0, \frac{1}{5}\right)$ is a point on the graph.
$g(4)=\frac{1}{4+2}=\frac{1}{6} \Rightarrow\left(0, \frac{1}{6}\right)$ is a point on the graph.

| $x$ | $f(x)$ |
| :---: | :---: |
| 0 | $\frac{1}{2}$ |
| 1 | $\frac{1}{3}$ |
| 2 | $\frac{1}{4}$ |
| 3 | $\frac{1}{5}$ |
| 4 | $\frac{1}{6}$ |


|  |  | 1 |  | $4 g(x)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 3 |  |  |  |  |  |  |
|  |  | , |  |  |  |  |  |  |  |
|  |  | $5$ | 2 |  |  |  |  |  |  |
|  |  | $\bigcirc$ |  |  |  |  |  |  |  |
|  |  |  | $1$ |  |  |  |  |  |  |
|  |  |  |  |  | - |  |  |  |  |
|  | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | $x$ |
|  |  |  | -1 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  | -2 |  |  |  |  |  |  |
|  |  | $x=-2$ |  |  |  |  |  |  |  |

The graph of $h(x)=x-2$ is a straight line graph. You just need to get 2 points on it to graph it. Choose the end points of the domain.
$x=0: h(0)=(0)-2=-2 \Rightarrow(0,-2)$ is a point on the graph.
$x=4: h(4)=(4)-2=2 \Rightarrow(4,2)$ is a point on the graph.


| $x$ | $h(x)$ |
| :---: | :---: |
| 0 | -2 |
| 4 | 2 |

$x=2.2$ is their point of intersection.
$g(x)=h(x) \Rightarrow \frac{1}{x+2}=x-2$
$\Rightarrow 1=(x-2)(x+2) \Rightarrow 1=x^{2}-4 \Rightarrow x^{2}=5$
$\therefore x=\sqrt{5}$
$\therefore \sqrt{5} \approx 2.2$

