Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

1996

6 (a) Let $f(x)=3 x+k, x \in \mathbf{R}$.
If $f(5)=0$, find the value of k.
(b) Let $g(x)=x^{2}+b x+c, x \in \mathbf{R}$.

The solutions of $g(x)=0$ are symmetrical about the line $x=1$.
If $x=-3$ is one solution of $g(x)=0$, find the other solution.
Find the value of b and the value of c.
(c) Let $f(x)=\frac{1}{x-2}$, for $x \in \mathbf{R}$ and $x \neq 2$.

Find the derivative of $f(x)$.
Tangents to $f(x)$ make an angle of 135° with the x axis.
Find the coordinates of the points on the curve of $f(x)$ at which this occurs.

Solution

6 (a)

$f(x)=3 x+k$
$f(5)=0 \Rightarrow 3(5)+k=0$
$\Rightarrow 15+k=0$
$\therefore k=-15$

6 (b)

$g(x)=x^{2}+b x+c$ is a quadratic graph as shown to the right.
The line $x=1$ is its axis of symmetry.
-3 is a solution (root) which is a place where the graph cuts the x-axis.

You can see from the diagram that the other solution is $x=5$.
If you substitute solutions for x in the function $g(x)$, you get
zero.
$x=-3: g(-3)=(-3)^{2}+b(-3)+c=0 \Rightarrow 9-3 b+c=0$
$\therefore-3 b+c=-9 \ldots . .(\mathbf{1})$
$x=5: g(5)=(5)^{2}+b(5)+c=0 \Rightarrow 25+5 b+c=0$
$\therefore 5 b+c=-25$..
Solve equation (1) and (2) simultaneously.

$$
\begin{array}{|c}
-3 b+c=-9 \ldots . .(\mathbf{1})(\times-1) \\
5 b+c=-25 . .(\mathbf{2})
\end{array} \rightarrow \begin{aligned}
& 3 b-c=9 \\
& \frac{5 b+c=-25}{8 b}=-16 \Rightarrow b=-2
\end{aligned}
$$

Substitute this value of b into Eqn. (2).
$5(-2)+c=-25 \Rightarrow-10+c=-25 \Rightarrow c=-15$

6 (c)
$y=f(x)=\frac{1}{x-2}=(x-2)^{-1}$

Move the power down in front of the bracket.
Take one away from the power.
Multiply by the differentiation of the inside of the bracket.
$\Rightarrow \frac{d y}{d x}=f^{\prime}(x)=-1(x-2)^{-2}(1)=-\frac{1}{(x-2)^{2}}$
You are find the slope by getting the tan of the angle with the x-axis.
$m=\tan 135^{\circ}=-1$ [Using your calculator.]
Slope $m=\tan \theta$

Steps: Finding points of contact given the

 slope, m, of the tangent1. Find $\frac{d y}{d x}$.
2. Put $\frac{d y}{d x}=m$ and solve for x.
3. Find the corresponding y values.
4. $y=f(x)=\frac{1}{x-2}$
$\Rightarrow \frac{d y}{d x}=-\frac{1}{(x-2)^{2}}$
5. $\frac{d y}{d x}=-1 \Rightarrow-\frac{1}{(x-2)^{2}}=-1$
$\Rightarrow \frac{1}{(x-2)^{2}}=1$
$\Rightarrow 1=(x-2)^{2}$
$\Rightarrow \pm 1=x-2$
$\therefore x=1,3$
6. $x=1: y=f(1)=\frac{1}{(1)-2}=\frac{1}{-1}=-1 \Rightarrow(1,-1)$ is a point of contact.
$x=3: y=f(3)=\frac{1}{(3)-2}=\frac{1}{1}=1 \Rightarrow(3,1)$ is a point of contact.

7 (a) Differentiate from first principles

$$
3 x-7
$$

with respect to x.
(b) (i) Find $\frac{d y}{d x}$ when $y=\frac{2 x}{4-x^{2}}$, for $x \in \mathbf{R}$ and $x \neq \pm 2$.

Show that $\frac{d y}{d x}>0$.
(ii) Differentiate $\left(x^{5}-\frac{1}{x^{2}}\right)^{7}$ with respect to $x, x \neq 0$.
(c) A stone is dropped from a height of 80 metres. Its height h metres above the ground after t seconds is given by

$$
h=80-t^{2} .
$$

Find
(i) its speed after t seconds
(ii) its speed after 2.5 seconds
(iii) the time it takes to fall the first 14.4 metres.

Solution

7 (a)

Steps

1. Find the y or $f(x)$ coordinates of P and Q.
2. Find the slope of $P Q$.
3. Find $\frac{d y}{d x}$ by finding the limit of the slope as h goes to zero.

$$
y=3(x)-7
$$

$$
\begin{aligned}
y & =3(x)-7 \\
x=x+h: y & =3(x+h)-7 \\
& =3 x+3 h-7
\end{aligned}
$$

Slope of $P Q=\frac{(3 x+3 h-7)-(3 x-7)}{x+h-x}$

$$
=\frac{3 x+3 h-7-3 x+7}{x+h-x}=\frac{3 h}{h}=3
$$

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0}(3)=3
$$

7 (b) (i)

$$
\begin{aligned}
& \begin{array}{l}
u=2 x \Rightarrow \frac{d u}{d x}=2 \\
v=4-x^{2} \Rightarrow \frac{d v}{d x}=-2 x
\end{array} \\
& y=\frac{2 x}{4-x^{2}} \longleftarrow u=\frac{u}{v} \Rightarrow \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}=\frac{\left(4-x^{2}\right)(2)-2 x(-2 x)}{\left(4-x^{2}\right)^{2}} \\
& \Rightarrow \frac{d y}{d x}=\frac{8-2 x^{2}+4 x^{2}}{\left(4-x^{2}\right)^{2}}=\frac{2 x^{2}+8}{\left(4-x^{2}\right)^{2}}
\end{aligned}
$$

$\frac{d y}{d x}=\frac{2 x^{2}+8}{\left(4-x^{2}\right)^{2}}>0$ for both positive and negative values of x as when they are squared the answer will be positive.

7 (b) (ii)
Move the power down in front of the bracket.
Take one away from the power.
Multiply by the differentiation of the inside of the bracket.

$$
u=x^{5}-\frac{1}{x^{2}}=x^{5}-x^{-2} \Rightarrow \frac{d u}{d x}=5 x^{4}+2 x^{-3}=5 x^{4}+\frac{2}{x^{3}}
$$

$y=\left(x^{5}-\frac{1}{x^{2}}\right)^{7} \Rightarrow \frac{d y}{d x}=7\left(x^{5}-\frac{1}{x^{2}}\right)^{6}\left(5 x^{4}+\frac{2}{x^{3}}\right)$
$\therefore \frac{d y}{d x}=\left(35 x^{4}+\frac{14}{x^{3}}\right)\left(x^{5}-\frac{1}{x^{2}}\right)^{6}$
7 (c) (i)
Draw up a s, v, a table as shown on the right.
$v=-2 t \mathrm{~m} / \mathrm{s}$
7 (c) (ii)
Find its speed v after a time $t=2.5$ seconds.

$$
a=\frac{d v}{d t}
$$

$v=-2 t=-2 \times 2.5=-5 \mathrm{~m} / \mathrm{s}$

7 (c) (iii)

Find the time t it takes to fall a height $h=14.4 \mathrm{~m}$.
$h=80-t^{2} \Rightarrow 14.4=80-t^{2}$
$\Rightarrow t^{2}=80-14.4$
$v=\frac{d s}{d t}$
$\Rightarrow t^{2}=65.6$
$\therefore t=\sqrt{65.6}=8.1 \mathrm{~s}$

8 (a) Find $\frac{d s}{d t}$ when $s=6 t^{2}-3 t+7$.
(b) Let $f(x)=x^{3}-3 x^{2}$, for $x \in \mathbf{R}$.
(i) Find $f^{\prime}(x)$, the derivative of $f(x)$. Hence, calculate the coordinates of the local maximum and the local minimum of $f(x)$.
(ii) Draw the graph of

$$
f(x)=x^{3}-3 x^{2}
$$

for $-1 \leq x \leq 3$.
(iii) Use your graph to estimate the values of x for which

$$
f(x)+2=0 .
$$

(iv) Use your graph to estimate the range of values of x for which

$$
f^{\prime}(x)<0 .
$$

Solution

8 (a)

$$
y=x^{n} \Rightarrow \frac{d y}{d x}=n x^{n-1}
$$

Constant Rule: If $y=$ Constant $\Rightarrow \frac{d y}{d x}=0$
Multiply by a constant rule: If $y=c u$, where c is a constant and u is a function of $x, \frac{d y}{d x}=c \times \frac{d u}{d x}$.
$s=6 t^{2}-3 t+7$
$\Rightarrow \frac{d s}{d t}=6 \times 2 t-3+0=12 t-3$
8 (b) (i)
$y=f(x)=x^{3}-3 x^{2}$
$\Rightarrow \frac{d y}{d x}=f^{\prime}(x)=3 x^{2}-6 x$
$\frac{d y}{d x}=0 \Rightarrow 3 x^{2}-6 x=0$
$\Rightarrow 3 x(x-2)=0$
$\therefore x=0,2$
Turning Point: $\frac{d y}{d x}=0$
$x=0: y=f(0)=(0)^{3}-3(0)^{2}=0-0=0 \Rightarrow(0,0)$ is a local maximum.
$x=2: y=f(2)=(2)^{3}-3(2)^{2}=8-12=-4 \Rightarrow(2,-4)$ is a local minimum.
$[(0,0)$ is the local maximum as its y coordinate is greater than the y coordinate of the other point.]

8 (b) (ii)

$x=-1: f(-1)=(-1)^{3}-3(-1)^{2}=-1-3 \times 1=-1-3=-4 \Rightarrow(-1,-4)$ is a point.
$x=0: f(0)=(0)^{3}-3(0)^{2}=0-3 \times 0=0-0=0 \Rightarrow(0,0)$ is a point.
$x=1: f(1)=(1)^{3}-3(1)^{2}=1-3 \times 1=1-3=-2 \Rightarrow(1,-2)$ is a point.
$x=2: f(2)=(2)^{3}-3(2)^{2}=8-3 \times 4=8-12=-4 \Rightarrow(2,-4)$ is a point.
$x=3: f(3)=(3)^{3}-3(3)^{2}=27-3 \times 9=27-27=0 \Rightarrow(3,0)$ is a point.

x	$f(x)$
-1	-4
0	0
1	-2
2	-4
3	0

8 (b) (iii)

$f(x)+2=0 \Rightarrow f(x)=-2$
Go to -2 on the $f(x)$ axis. Draw a line straight across until it meets the graph. Read off the x values.
$\therefore x=-0.7,1,2.7$

8 (b) (iv)

$f^{\prime}(x)<0$: Curve is decreasing; $f^{\prime}(x)>0$: Curve is increasing.
You can see the graph is decreasing from values of x from 0 to 2 .
$\therefore f^{\prime}(x)<0 \Rightarrow 0<x<2$

