Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

Lesson No. 8: Turning Points

2005

6 (c) Let $f(x)=x^{2}+p x+10, x \in \mathbf{R}$, where $p \in \mathbf{Z}$.
(i) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(ii) The minimum value of $f(x)$ is at $x=3$. Find the value of p.
(iii) Find the equation of the tangent to $f(x)$ at the point $(0,10)$.

2002

6 (c) Let $f(x)=x^{3}-a x+7$ for all $x \in \mathbf{R}$ and for $a \in \mathbf{R}$.
(i) The slope of the tangent to the curve $y=f(x)$ at $x=1$ is -9 .

Find the value of a.
(ii) Hence, find the co-ordinates of the local maximum point and the local minimum point on the curve $y=f(x)$.

2000

8 (c) Let $f(x)=x^{3}-3 x^{2}+a x+1$ for all $x \in \mathbf{R}$ and for $a \in \mathbf{R}$.
$f(x)$ has a turning point (a local maximum or a local minimum) at $x=-1$.
(i) Find the value of a.
(ii) Is this turning point a local maximum or a local minimum?

Give a reason for your answer.
(iii) Find the co-ordinates of the other turning point of $f(x)$.

1998

6 (c) $f(x)=(x+k)(x-2)^{2}$, where k is a real number.
(i) If $f(3)=7$, find the value of k.
(ii) Using this value for k, find the coordinates of the local maximum and of the local minimum of $f(x)$.

1997

6 (c) Let $f(x)=a x^{3}+b x+c$, for all $x \in \mathbf{R}$ and for $a, b, c \in \mathbf{R}$.
Use the information which follows to find the value of a, of b and of c :
(i) $f(0)=3$
(ii) the slope of the tangent to the curve of $f(x)$ at $x=1$ is -18
(iii) the curve of $f(x)$ has a local maximum at $x=2$.

Answers

20056 (c) $2 x+p$
(ii) $p=-6$
(iii) $6 x+y-10=0$
6 (c) (i) 12
(ii) $(2,-9),(-2,23)$
20008 (c) (i) $a=-9$
(ii) Local maximum; $\frac{d^{2} y}{d x^{2}}=-12$
(iii) $(3,-26)$
19986 (c) (i) 4
(ii) $(2,0),(-2,32)$
19976 (c) $a=2, b=-24, c=3$

