Differentiation \& Functions (Q 6, 7 \& 8, Paper 1)

Lesson No. 7: Tangents

2007

6 (c) Let $f(x)=(5 x-2)^{4}$ for $x \in \mathbf{R}$.
(i) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(ii) Find the co-ordinates of the point on the curve $y=f(x)$ at which the slope of the tangent is 20 .

2003

8 (c) Let $f(x)=x^{3}+2 x^{2}-1$.
(i) Find $f^{\prime}(x)$, the derivative of $f(x)$.
(ii) L is the tangent to the curve $y=f(x)$ at $x=-\frac{2}{3}$. Find the slope of L.
(iii) Find the two values of x at which the tangents to the curve $y=f(x)$ are perpendicular to L.

2000

6 (c) Let $g(x)=(2 x+3)\left(x^{2}-1\right)$ for $x \in \mathbf{R}$.
(i) For what two values of x is the slope of the tangent to the curve of $g(x)$ equal to 10 ?
(ii) Find the equations of the two tangents to the curve of $g(x)$ which have slope 10 .

1999

6 (c) Let $f(x)=x^{3}-6 x^{2}+12$ for $x \in \mathbf{R}$.
Find the derivative of $f(x)$.
At the two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the tangents to the curve $y=f(x)$ are parallel to the x axis, where $x_{2}>x_{1}$.
Show that
(i) $x_{2}-x_{1}=4$
(ii) $y_{2}=y_{1}-32$.

1997

8 (b) Find the equation of the tangent to the curve

$$
y=x^{3}-4 x+7
$$

at the point where $x=1$.

1996

6 (c) Let $f(x)=\frac{1}{x-2}$, for $x \in \mathbf{R}$ and $x \neq 2$.
Find the derivative of $f(x)$.
Tangents to $f(x)$ make an angle of 135° with the x axis.
Find the coordinates of the points on the curve of $f(x)$ at which this occurs.

Answers

20076 (c) (i) $f^{\prime}(x)=20(5 x-2)^{3}$
(ii) $\left(\frac{3}{5}, 1\right)$
20038 (c) (i) $3 x^{2}+4 x$
(ii) $-\frac{4}{3}$
(iii) $-\frac{3}{2}, \frac{1}{6}$
2000
6 (c) (i) $-2,1$
(ii) $10 x-y+17=0,10 x-y-10=0$
19996 (c) $3 x^{2}-12 x ; x_{1}=0, x_{2}=4 ; y_{1}=12, y_{2}=-20$
19978 (b) $x+y-5=0$

19966 (c) $-\frac{1}{(x-2)^{2}} ;(1,-1),(3,1)$

