DIFFERENTIATION & FUNCTIONS (Q 6, 7 & 8, PAPER 1)

LESSON No. 15: INTERSECTING GRAPHS

2005

- 8 Let $f(x) = \frac{1}{x-1}, x \in \mathbf{R}, x \neq 1$.
 - (i) Find f(-3), f(-1.5), f(0.5), f(1.5), f(5).
 - (ii) Draw the graph of the function f from x = -3 to x = 5.
 - (iii) On the same diagram, draw the graph of the function g(x) = x + 1 in the domain $-2 \le x \le 2$, $x \in \mathbb{R}$.
 - (iv) Use your graphs to estimate the values of x for which f(x) = g(x).
 - (v) Find, using algebra, the values of x for which f(x) = g(x).

2000

8 (b) (i) Draw the graph of

$$g(x) = \frac{1}{x}$$
 for $-3 \le x \le 3$, $x \in \mathbf{R}$ and $x \ne 0$.

(ii) Using the same axes and the same scales, draw the graph of

$$h(x) = x + 1 \text{ for } -3 \le x \le 3, x \in \mathbf{R}.$$

(iii) Use your graphs to estimate the values of x for which

$$\frac{1}{x} = x + 1$$
.

1999

8 Let $f(x) = 2x^3 - 5x^2 - 4x + 3$ for $x \in \mathbf{R}$.

(i) Complete the table

х	-1.5	-1	0	1	2	3	3.5
f(x)	-9						13.5

(ii) Find the derivative of f(x).

Calculate the co-ordinates of the local minimum and show that the co-ordinates of the local maximum are $\left(-\frac{1}{3}, \frac{100}{27}\right)$.

(iii) Draw the graph of

$$f(x) = 2x^3 - 5x^2 - 4x + 3$$

for $-1.5 \le x \le 3.5$.

(iv) Write the equation $2x^3 - 5x^2 - 6x + 6 = 0$ in the form

$$2x^3 - 5x^2 - 4x + 3 = ax + b$$
, $a, b \in \mathbb{Z}$.

Hence, use your graph to estimate the solutions of the equation

$$2x^3 - 5x^2 - 6x + 6 = 0.$$

1997

8 (c) Draw a graph of

$$g(x) = \frac{1}{x+2}$$

for $0 \le x \le 4$, $x \in \mathbf{R}$.

Using the same axes and the same scales draw the graph of

$$h(x) = x - 2$$
.

Show how your graphs may be used to estimate the value of $\sqrt{5}$.

ANSWERS

2005 8 (i)
$$-0.25$$
, -0.4 , -2 , 2 , 0.25 (iv) ± 1.4

$$(iv) +1.4$$

$$(v) \pm \sqrt{2}$$

2000 8 (b) (iii)
$$x = -1.6, 0.6$$

х	-1.5	-1	0	1	2	3	3.5
f(x)	- 9	0	3	-4	-9	0	13.5

(ii)
$$6x^2 - 10x - 4$$
; (2, -9)

(iv)
$$a = 2$$
, $b = -3$; $x = -1.4$, 0.7, 3.2