DIFFERENTIATION & FUNCTIONS (Q 6, 7 & 8, PAPER 1)

LESSON No. 1: WORKING WITH FUNCTIONS

2007

8 (a) Let $f(x) = \frac{1}{4}(6-2x)$ for $x \in \mathbb{R}$. Evaluate f(5).

2006

8 (a) Let $g(x) = \frac{3}{x+1}$, $x \in \mathbb{R}$, $x \neq -1$.

Evaluate g(0.5) - g(-0.5).

- (b) Let $h(x) = x^2 + 2x 1$, $x \in \mathbf{R}$.
 - (i) Simplify h(x-5).
 - (ii) Find the value of x for which h(x-5) = h(x) 5.

2005

6 (a) Let $g(x) = \frac{x+5}{2}$, $x \in \mathbf{R}$.

Find g(0) + g(2).

2004

6 (a) Let g(x) = 1 - kx.

Given that g(-3) = 13, find the value of k.

- 8 (a) Let g(x) = 3x 7.
 - (i) Find g(7).
 - (ii) Find the value of k for which g(7) = k[g(0)].

2003

6 (a) Let $g(x) = \frac{2x}{3} - 1$.

Find the value of x for which g(x) = 5.

8 (b) (i) The function *g* is defined for natural numbers by the rule:

0 if is even.

1 if is odd

Find g(13) + g(14) + g(15).

(ii) Given that $h(x) = x^2$, write down h(x + 3).

Hence, find the value of x for which h(x) = h(x + 3).

2002

6 (a) Let $f(x) = \frac{1}{3}(x-8)$ for $x \in \mathbb{R}$. Evaluate f(5).

2001

6 (a) Let $g(x) = \frac{1}{x^2 + 1}$ for $x \in \mathbf{R}$.

Evaluate

- (i) g(2)
- (ii) g(3) and write your answers as decimals.

2000

8 (a) Let p(x) = 3x - 12.

For what values of x is p(x) < 0 where x is a positive whole number?

1999

6 (a) Let $f(x) = 2(3x-1), x \in \mathbf{R}$.

Find the value of *x* for which f(x) = 0.

1998

6 (a) If f(x) = 5x - 8 and g(x) = 13 - 2x, find the value of x for which f(x) = g(x).

1996

6 (a) Let $f(x) = 3x + k, x \in \mathbf{R}$.

If f(5) = 0, find the value of k.

ANSWERS

2007 8 (a) f(5) = -1

2006 8 (b) (i) $x^2 - 8x + 14$

(ii) x = 2

2005 6 (a) 6

2004 6 (a) 4

8 (a) (i) 14

(ii) -2

2003 6 (a) 9

8 (b) (i) 2

(ii) $x^2 + 6x + 9$; $-\frac{3}{2}$

2002 6 (a) -1

2001 6 (a) (i) 0.2

(ii) 0.1

2000 8 (a) {1, 2, 3}

1999 6 (a) $\frac{1}{3}$

1998 6 (a) 3

1996 6 (a) -15